首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为探索板栗淀粉酶水解特性及工艺条件,试验采用中温α-淀粉酶时板栗淀粉进行水解,并在水解温度、pH、底物浓度及酶用量等单因素试验的基础上进行了二次回归正交旋转试验,确定了板栗淀粉酶水解工艺条件.结果表明:对α-淀粉酶水解板栗淀粉影响程度大小依次为pH>水解温度>酶用量>底物浓度;α-淀粉酶水解板栗淀粉的适宜工艺条件为:水解温度70.2℃、pH 5.83、底物浓度73.10g/L、酶用量122.45U/g、水解时间75min,在此工艺条件下板栗淀粉酶水解度为27.476%.  相似文献   

2.
板栗淀粉酶水解工艺条件研究   总被引:1,自引:0,他引:1  
为探索板栗淀粉酶水解特性及工艺条件,采用中温α-淀粉酶对板栗淀粉进行水解,并在水解温度、pH、底物浓度及酶用量等单因素试验的基础上进行二次回归正交旋转试验,确定板栗淀粉酶解工艺条件.结果表明:对α-淀粉酶水解板栗淀粉影响程度大小依次为pH>水解温度>酶用量>底物浓度;α-淀粉酶水解板栗淀粉的适宜工艺条件为:水解温度70.2 ℃,pH 5.83,底物浓度73.10 g/L,酶用量122.45 U/g,水解时间为75 min.在此工艺条件下板栗淀粉酶水解度为27.476% .  相似文献   

3.
高温型α-淀粉酶制取麦芽糊精工艺条件的优化   总被引:2,自引:0,他引:2  
研究了高温型α-淀粉酶水解玉米淀粉制备麦芽糊精的工艺,通过正交试验对其工艺条件进行了优化。结果表明,高温型α-淀粉酶制备麦芽糊精的最佳工艺为:温度90℃、时间80min、加酶量60U/g。  相似文献   

4.
以银杏为原料,研究α-淀粉酶水解制备银杏抗性淀粉工艺。以银杏抗性淀粉得率为指标,探讨α-淀粉酶用量、pH、酶解温度、酶解时间、高压处理温度、高压处理时间、老化温度和老化时间对银杏抗性淀粉得率的影响。结果表明,响应面法优化α-淀粉酶水解制备银杏抗性淀粉的最佳工艺条件:加酶量为8.0U/g,pH为5.8,酶解温度为88.7℃,酶解时间为19.3 min,高压处理温度为120℃,高压处理时间为35 min,老化温度为3℃,老化时间为24 h,在该工艺条件下银杏抗性淀粉得率可达24.12%。为银杏抗性淀粉的开发提供参考。  相似文献   

5.
酶法制备低聚壳聚糖的研究   总被引:1,自引:0,他引:1  
通过对α-淀粉酶、纤维素酶、脂肪酶降解壳聚糖产物的黏均分子量的测定,确定了这三种酶降解壳聚糖的最佳工艺条件。结果表明:α-淀粉酶降解的最传条件为时间120min,温度45℃,酶量1400U/g;纤维素酶降解的最佳条件为时间75min,温度45℃,酶量400U/g;脂肪酶降解的最佳条件为时间90min,温度45℃,酶量800U/g。同时得到了分子量小于2000的低聚壳聚糖,为进一步研究低聚壳聚糖与金属离子络合提供了条件。  相似文献   

6.
木薯淀粉酶解工艺的优化   总被引:8,自引:3,他引:5       下载免费PDF全文
研究了中温α-淀粉酶水解木薯淀粉的工艺条件,以水解产生的还原糖含量作为指标,通过单因素试验和二次正交回归旋转组合试验优化,用DPS软件分析处理数据,建立了模型,最终确定了中温α-淀粉酶水解木薯淀粉的最佳工艺条件是酶用量162U/g淀粉,水解温度为63℃、底物浓度6g/100mL、水解时间150min,葡萄糖糖得率是46.94%,验证试验结果与模型基本相符。  相似文献   

7.
利用耐高温α-淀粉酶能将底物同步糊化和液化的特性,通过单因素和正交试验对耐高温α-淀粉酶水解荞麦淀粉的动力学参数和最适反应条件进行了测定.结果表明:耐高温α-淀粉酶的最适温度为80~85℃,最适pH为5.0~6.5;该酶水解荞麦淀粉的Km为4.9674mg/mL,Vm为0.3448mg/(mL·min);该酶水解荞麦淀粉的优化工艺条件为荞麦淀粉浆浓度25%,温度为83℃,pH6.5,酶用量40U/g,液化时间15min.荞麦淀粉液化液糖化后的DE值为89.87%.  相似文献   

8.
荞麦淀粉双酶水解工艺条件的优化研究   总被引:2,自引:1,他引:1  
为掌握中温α-淀粉酶和糖化酶双酶水解荞麦淀粉的工艺条件,本试验在系统分析影响荞麦淀粉水解度的单因素试验的基础上,采用二次回归正交组合试验设计对荞麦淀粉双酶水解工艺条件进行优化.结果表明,影响荞麦淀粉水解度的因素为糖化酶用量、糖化温度、糊化前α-淀粉酶用量、糊化后a-淀粉酶用量,糊化后a-淀粉酶用量与糖化温度、糖化酶用量与糖化温度间存在显著交互作用.在糊化前α-淀粉酶用量为61.87~66.26 U.g-1、糊化后a-淀粉酶用量20.89~24.64 U.g-1、糖化酶用量为30.98~37.14 U.g-1、糖化温度60.85~62.28℃的双酶水解工艺务件下,荞麦淀粉的水解度超过90%.  相似文献   

9.
板粟深加工中淀粉的酶水解研究   总被引:7,自引:0,他引:7  
谢主兰  吴雪辉 《食品科学》2003,24(10):62-66
试验对比了BAA中温α-淀粉酶和耐高温α-(Termamyl 120L,S型)对板栗浆液中淀粉的液化效果,选择使用耐高温α-淀粉酶(Termamyl 1120L,S型)为液化板栗淀粉的作用酶,单因素研究确定了液化工艺参数为:料水比1:5,液化温度90℃,pH6.0,酶用量7U/g果肉,液化时间60min。然后采用Novozym^TMAG糖化酶对液化后的板粟淀粉进行糖化,以淀粉水解度(DE值)和糖化液中还原糖的含量(g/100m1)为指标,正交试验表明,在糖化温度60℃,pH4.5,Novozym^TMAG使用量为80U/g果肉的条件下糖化90min,可使水解度(DE值)和糖化液中还原糖含量(g/100m1)分别达到48.9%和4.52g/100ml。  相似文献   

10.
赵红岩 《中国酿造》2014,(9):102-104
采用α-淀粉酶和糖化酶协同水解作用生产大麦保健茶,并且对酶解参数进行研究.试验以大麦汁中还原糖含量作为考察指标,选取双酶比例,酶促反应温度和反应时间3个参数进行研究.得到最优的试验条件为α-淀粉酶为4 U/g,糖化酶为6 U/g,酶促反应温度为40℃,时间为40 min.双酶水解体系具有反应温度低、时间短、酶促反应效率高的优点.  相似文献   

11.
玉米抗性淀粉酶解法制备工艺的研究   总被引:3,自引:0,他引:3  
以抗性淀粉得率为评价指标,采用酶解法制备玉米抗性淀粉,通过正交试验确定了酶解法制备的最佳工艺条件:α-淀粉酶酶解条件为淀粉乳浓度20%,α-淀粉酶用量15u/g,酶解温度70℃;普鲁兰酶脱支条件为普鲁兰酶用量4u/g,脱支时间10h,pH值4.5;糊化条件为糊化时间20min,糊化温度120℃。  相似文献   

12.
以华南9号食用木薯为原料,对制备木薯饮料的酶解工艺进行优化研究,分别采用耐高温α-淀粉酶和糖化酶对食用木薯浆的液化和糖化工艺进行单因素和正交试验,优选出最佳的食用木薯饮料加工中酶解关键工艺条件。结果表明:液化的最佳条件为耐高温α-淀粉酶用量为80 U/g、酶解温度85℃、酶解时间120 min,在此条件下生产的木薯汁De值最高为30.34%(p0.05);糖化的最佳条件为糖化酶用量240 U/g、酶解温度55℃、酶解时间180min、酶解p H 4.5,此条件下食用木薯饮料可溶性固形物含量最高为9.33%(p0.05)。经双酶联合酶解制备获得的食用木薯饮料风味浓郁,口感细腻、甜度适中,组织状态良好。  相似文献   

13.
研究了液化温度和时间、糖化温度和时间、酶用量、pH和底物浓度在糖化过程中对糖化质量和DE值的影响,确定了陈粮大米糖化工艺的最适条件为:液化pH5.8-6.0,α-淀粉酶10-12U/g干物质,105-108℃维持5-8min,闪冷到95-97℃,保持90-120min;糖化pH4.2-4.4,糖化酶100-120U/g干物质,温度60 2℃,时间28-32h。  相似文献   

14.
本文研究了耐高温α-淀粉酶水解玉米淀粉制备脂肪代用品的工艺,通过响应面分析方法对其工艺条件进行了优化,并研究了对脂肪代用品有重要影响作用的糊化工艺。结果表明,耐高温α-淀粉酶制备玉米淀粉基质脂肪代用品的最佳工艺为:时间5~15min,加酶量8.1U/g,温度95℃,底物浓度为15%。  相似文献   

15.
张春玲  王遂 《食品科技》2007,32(3):200-202
研究了壳聚糖的降解和黏均分子量的测定,确定了壳聚糖降解的适宜条件。亚硝酸钠降解壳聚糖的最佳条件是10% NaNO2用量0.6mL、温度35℃、时间35min、醋酸浓度3%;双氧水降解的最佳条件是H2O2浓度6%、温度70℃、时间6h、醋酸浓度4%;中温α-淀粉酶的最佳工艺条件为温度40℃、时间90min、酶用量1200U/g。  相似文献   

16.
以筛选合适酶种类为基础,采用复合酶水解法释放甘薯中结合酚,以单因素试验为基础并通过响应面分析法,得到优化后的复合酶水解甘薯结合酚工艺参数。结果表明,在所筛选的6种酶中,中性蛋白酶、纤维素酶、α-淀粉酶、果胶酶均可促进甘薯结合酚的释放。将这4种酶复合对甘薯结合酚进行水解释放的最优工艺参数为果胶酶用量600 U/g、纤维素酶用量600 U/g、α-淀粉酶用量 400 U/g以及中性蛋白酶用量 600 U/g,液料比 15∶1(mL/g)、水解时间16 h、温度 53℃、pH6。实际提取得到结合酚提取量为(0.140±0.002)g/100 g,达到预测值(0.143 g/100 g)的 97.55%,说明回归模型可靠。  相似文献   

17.
木薯渣经α-淀粉酶、糖化酶和纤维素酶单独酶水解时,其最佳酶用量分别为:2500U/g淀粉、2000U/g淀粉和120U/g纤维素。当木薯渣用α-淀粉酶与糖化酶用量一定时,底物浓度(5%、10%、15%)的增加,最佳酶水解时间(葡萄糖浓度最高时所需要的水解时间)会延长,且糖化酶所需的最佳酶水解时间明显长于淀粉酶。当纤维素酶在酶用量为120U/g纤维素,底物浓度为5%时,来自木薯渣中纤维素全部转化为葡萄糖。α-淀粉酶与糖化酶对木薯渣酶解具有协同作用,可提高最终糖浓度。当α-淀粉酶的酶用量为2500U/g淀粉,糖化酶的用量为3000U/g淀粉时,木薯渣浓度为5%和15%时,酶水解产生的最终葡萄糖浓度为28.98g/L和62.04g/L,其水解效率(相对于原料中淀粉)分别为100%和78.7%。  相似文献   

18.
本研究将中温淀粉酶和高温淀粉酶结合使用制备糊精。通过正交试验确定了比较适宜的水解参数为温度90℃,时间10min,中温淀粉酶用量4U/g淀粉,高温淀粉酶用量7U/g淀粉;两种淀粉酶的结合使用可以降低酶的用量和缩短酶解反应时间。  相似文献   

19.
文章以薏米为原料,经糊化、中温α-淀粉酶液化完全后,采用糖化酶酶解提取制备化妆品用薏米提取液。通过单因素实验和正交试验优化,确定复合酶法制备化妆品用薏米提取液的最佳糖化工艺条件。结果表明最佳工艺条件为:料液比=1∶20、85℃糊化30 min、淀粉酶用量25 U/g原料、液化温度(70±2)℃、液化时间40min;糖化酶用量100 U/g原料、糖化p H(5.0±0.2)、糖化温度(58±2)℃、糖化时间60 min。薏米粗多糖得率可达1.92%以上。  相似文献   

20.
以玉米淀粉为原料,用α-淀粉酶对合成的辛烯基琥珀酸酐淀粉水解,研究酶法制备辛烯基琥珀酸酐水解淀粉的工艺条件,并通过响应面分析实验对工艺进行优化。确定合成的最佳工艺参数为:酶用量115U/g,水解温度95℃,水解时间49min,所得产品辛烯基琥珀酸酐水解淀粉的DE值为8.01。通过响应面方差分析可以得出,三个因素对辛烯基琥珀酸酐水解淀粉的DE值的影响显著,且加酶量与水解温度、水解温度与水解时间之间的交互影响作用也显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号