首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
以脱脂菜籽粕为原料,水解度为考察指标,采用碱性蛋白酶与中性蛋白酶分步酶解法制备复合氨基酸及小肽等水解产物。通过正交试验确定碱性蛋白酶的最佳酶解工艺参数为:温度50℃、pH10.5、加酶量3250U/g、液料比15:1、时间1.5h;中性蛋白酶的最佳酶解工艺参数为:温度45℃、pH9、加酶量4500U/g、时间2h。制备的复合氨基酸及小肽等水解产物总水解度和氮收率可达25.66% 和86.8%;水解产物在pH3~7 范围内,氮溶解指数高于72.19%。三氯乙酸氮溶解指数达85.67%,且产物中植酸、单宁等主要的抗营养因子的含量明显降低。  相似文献   

2.
李荣  于君  姜子涛  黄贤勇 《食品科学》2017,38(20):169-175
在微波辅助的条件下,利用碱性蛋白酶和风味蛋白酶分步对紫苏饼粕蛋白进行水解,应用正交试验确定了最佳的酶解条件。通过Sephadex G-15凝胶层析、反相高效液相色谱(reversed phase-high performance liquid chromatography,RP-HPLC)法和电子舌技术对酶解液成分与鲜味的变化进行了表征。结果表明,在微波功率400 W条件下,第1步碱性蛋白酶最佳酶解条件为酶添加量1 600 U/g、p H 10.0、微波温度60℃、微波时间35 min;第2步风味蛋白酶的最佳酶解条件为酶添加量1 600 U/g、p H 6.5、微波温度65℃、微波时间40 min,分步酶解最终水解度为44.86%。最后通过凝胶层析、RP-HPLC与电子舌表征,证明微波辅助分步酶解法快速、高效,且与单独酶解所得产物相比,其产物鲜味改善明显。  相似文献   

3.
以酶解产生的氨基态氮为指标,研究中性蛋白酶、碱性蛋白酶、木瓜蛋白酶三种酶制剂的酶解温度、酶解时间、pH、加酶量对猪皮制备胶原多肽酶解效果的影响。通过单因素试验和正交试验确定了三种酶制剂的酶解条件,中性蛋白酶:温度50℃、pH为7、酶解时间4 h、加酶量3 000 U/g;碱性蛋白酶:温度50℃、pH为8、酶解时间5 h、加酶量3 000 U/g;木瓜蛋白酶:温度60℃、pH为6、酶解时间4 h、加酶量2 500 U/g。利用高效液相色谱法检测了不同酶制剂制备所得产物中氨基酸种类及含量,结果显示三种酶制剂所得酶解产物中均含有被检测的各种氨基酸组分,且以碱性蛋白酶处理组各种氨基酸含量最高。  相似文献   

4.
为高效获得胶原蛋白,以鮟鱇鱼鱼皮为原料,以风味蛋白酶添加量、碱性蛋白酶添加量、超声时间、酶解时间、酶解温度和pH值为试验因素,采用超声-双酶法和双酶法提取胶原蛋白,利用正交试验确定胶原蛋白的最佳提取工艺并对结果进行比较分析,得出较好的提取方法。结果表明,超声-双酶法提取胶原蛋白最佳提取工艺为:风味蛋白酶添加量3 000 U/g,碱性蛋白酶添加量5 000 U/g,超声时间70 min,酶解时间5 h,酶解温度50℃,在此条件下得到胶原蛋白提取率为(8.86±0.64)%;双酶法提取胶原蛋白最佳提取条件为:风味蛋白酶添加量5 000 U/g,碱性蛋白酶添加量5 000 U/g,酶解温度55℃,p H8.0,在此条件下得到胶原蛋白提取率为(4.55±0.20)%,其中风味蛋白酶添加量比超声-双酶法多2 000 U/g,且胶原蛋白提取率比超声-双酶法低4.31%。综上可知,选取超声-双酶法提取鮟鱇鱼皮胶原蛋白。  相似文献   

5.
研究了微波辅助碱性蛋白酶和风味蛋白酶双酶酶解棉籽粕的工艺条件.通过单因素实验确定了碱性蛋白酶酶解的最佳工艺条件为:微波温度60℃,微波功率500 W,酶加量5%(以底物质量计),酶解时间15 min;风味蛋白酶酶解的最佳工艺条件为:微波温度60℃,微波功率600W,酶加量5%(以底物质量计),酶解时间15 min.参照单因素优化条件,对棉籽粕进行连续酶解,酶解液多肽含量为13.32 mg/mL.棉籽粕经过微波连续双酶酶解后,吸油性、起泡性、乳化性等功能性质得到改善.  相似文献   

6.
以鹰嘴豆为原料,以其酶解产物对α-葡萄糖苷酶的抑制率和水解度为指标,比较中性蛋白酶、碱性蛋白酶、木瓜蛋白酶和风味蛋白酶对鹰嘴豆的酶解效果,并进一步对碱性蛋白酶的酶解工艺参数进行响应面法优化。结果表明碱性蛋白酶的酶解效果最好,响应面法优化得到碱性蛋白酶酶解鹰嘴豆制备α-葡萄糖苷酶抑制肽的最佳工艺条件为:酶解时间5.1 h,酶解温度57℃,底物浓度5.2%,p H 10.0,加酶量4 000 U/g。在该工艺条件下,鹰嘴豆蛋白水解度为14.51%,酶解产物对α-葡萄糖苷酶的抑制率可达32.79%。  相似文献   

7.
为探索制备马鹿茸降血糖肽的最佳工艺条件,以α-葡萄糖苷酶抑制率为指标,从碱性蛋白酶、风味蛋白酶、中性蛋白酶和胰蛋白酶中筛选出两种酶,根据其体外降血糖效果确定酶的作用顺序,再以水解度、α-葡萄糖苷酶抑制率和蛋白质回收率为指标进行单因素试验和正交试验,优化降血糖肽制备工艺条件。结果表明:碱性蛋白酶和风味蛋白酶比中性蛋白酶和胰蛋白酶更适合用于制备马鹿茸降血糖肽。采用碱性蛋白酶-风味蛋白酶顺序对马鹿茸进行水解,所得酶解产物的α-葡萄糖苷酶抑制率、蛋白质回收率和水解度较高,分别为21.11%、39.12%、19.88%。通过单因素试验和正交试验确定双酶酶解最佳工艺条件为先用碱性蛋白酶在p H 8.0、60℃、底物质量分数12%、加酶量5 000 U/g条件下酶解3 h,再用风味蛋白酶于p H 6.5、45℃、底物质量分数5%、加酶量6 000 U/g条件下酶解1 h。双酶分步水解终产物的α-葡萄糖苷酶抑制率受质量浓度的影响,当质量浓度为3 mg/m L时,α-葡萄糖苷酶抑制率可达94.09%,IC50值为1.82 mg/m L。碱性蛋白酶-风味蛋白酶双酶分步水解马鹿茸可获得高α-葡萄糖苷酶抑制率的降血糖肽。  相似文献   

8.
为进一步提高葵花籽蛋白酶解效率,以葵花籽粗蛋白为原料,酶解前期对其进行超声波预处理,利用碱性蛋白酶和风味蛋白酶进行分步酶解。酶解程度以水解度为评价指标并采用二次旋转正交组合设计优化超声波辅助酶解的工艺条件。结果表明:底物浓度为2%(g/mL),超声功率50W,超声波预处理时间35 min;碱性蛋白酶酶解温度55℃,pH=8.5,酶解时间1.5 h,加酶量1500U/g;风味蛋白酶酶解温度50℃,pH=7.0,酶解时间1.5 h,加酶量为3000 U/g。最终可达到最佳水解度为45.32%。  相似文献   

9.
酶解菜籽粕制备多肽的研究   总被引:1,自引:0,他引:1  
杜冬梅  郭华  邹正 《现代食品科技》2011,27(11):1344-1348
本试验以菜籽粕为原料,从四种蛋白酶中挑选出中性蛋白酶和碱性蛋白酶对菜籽粕进行同步复合酶解。分别考察了不同的加酶量、酶比、料液比和时间对多肽得率的影响,并利用响应面分析法对混合蛋白酶水解菜籽粕的条件进行了优化。结果表明,在加酶量固定为4500 U/g,温度50℃,pH为8.0,料液比1:8及碱性蛋白酶:中性蛋白酶为3:1条件下酶解6.5 h,可使多肽得率达到54.89%。  相似文献   

10.
以异育银鲫(Carassius auratus gibelio)蛋白为原料,以酶解产物的DPPH自由基清除率为评价指标,从酸性蛋白酶、中性蛋白酶、碱性蛋白酶、木瓜蛋白酶、菠萝蛋白酶、风味蛋白酶、胃蛋白酶和胰蛋白酶8种蛋白酶中筛选出风味蛋白酶作为最佳酶解用酶,并通过单因素试验和正交试验确定风味蛋白酶酶解的最佳工艺条件为:加酶量3 000 U/g、底物浓度7%、酶解pH 7.5、酶解温度55℃、酶解时间4 h。在该条件下对异育银鲫的水解度为46.78%,酶解产物的DPPH自由基清除率为90.12%、羟自由基清除率为82.31%、超氧阴离子自由基清除率为79.45%;在此基础上对酶解液进行硫酸铵盐析、活性炭脱腥、超滤膜分段、透析脱盐、浓缩和干燥,得到不同分子量段酶解产物。  相似文献   

11.
为制备腊味香精提供更丰富的前体物,以猪瘦肉为原料,水解度为指标,选用Alcalase和Flavourzyme为试验用酶,通正交试验优化双酶法水解猪瘦肉蛋白最佳工艺条件。结果表明:Alcalase和Flavourzyme水解瘦肉蛋白其最佳条件为,pH 9时,用1 000U/g Alcalase于60℃下水解6h,再用2 500U/g Flavourzyme于50℃、pH 4.5继续水解4h。此时,水解度达到34.82%,比Alcalase和Flavourzyme单酶水解度分别提高34.12%和27.48%,且酶解产物还含有丰富的制备腊味香精的前提物。  相似文献   

12.
孙勇 《中国酿造》2014,(8):38-42
以大豆分离蛋白为原料,选用Alcalase 2.4L碱性内切酶和Flavourzyme风味蛋白酶对大豆分离蛋白进行酶法水解及脱苦工艺研究。以水解度和苦味分值为考察值,对酶解工艺进行优化,确定最佳条件。结果表明:Alcalase2.4L碱性内切酶最佳酶解条件为加酶量14 000 U/g、酶解温度60℃、酶解pH8.5、底物质量分数5%,酶解时间2h,最终水解度为45.34%,此时水解液苦味值为4。Flavourzyme风味蛋白酶对水解液进行二次水解的最优酶解条件为加酶量300 U/g、酶解温度55℃、酶解pH 7.0、酶解时间3 h,此条件下大豆分离蛋白水解液苦味值最低为1.2。Alcalase2.4L碱性内切酶和Flavourzyme风味蛋白酶水解大豆分离蛋白使水解度得到较大提高的同时也解决了水解液的苦味问题。  相似文献   

13.
李峰  潘瑶  陈奇 《食品科学》2010,31(10):69-74
以大豆分离蛋白为原料,选用碱性蛋白酶和风味蛋白酶,分别从酶解pH 值、酶解温度、酶用量和底物质量分数因素研究其对单酶酶解大豆分离蛋白的影响。并通过Minitab 软件,利用响应曲面试验优化双酶酶解工艺条件。结果表明,其最佳酶解条件为酶解pH7.7、碱性蛋白酶用量为110mg/g 底物、风味蛋白酶用量为90mg/g底物、酶解温度56℃、底物质量分数8%、酶解时间7h,所得的大豆活性肽的分子量主要集中在1000D 以下。  相似文献   

14.
利用碱性蛋白酶(Alcalase)、风味蛋白酶(Flavourzyme)和复合蛋白酶(Protamex)对高底物浓度(135g/L)玉米蛋白进行双酶复合水解,研究复合水解对水解物的水解度、可溶性蛋白质含量和抗氧化活性的影响,并对双酶酶解效果较好的酶解液进行了分子量分布测定。结果表明,Flavourzyme和Alcalase、Flavourzyme和Protamex、Protamex和Alcalase顺次水解玉米黄粉,总水解度分别为27.11%、26.95%和19.76%,可溶性蛋白质含量分别为50.33、40.32、48.85mg/ml,抗氧化活性分别为634.35、576.79和593.21 U/ml。多肽分子量主要分布在5 801.170~238.962u,与单酶水解相比均有显著提高。  相似文献   

15.
采用脱脂菜籽饼为原料,分别在碱性蛋白酶、中性蛋白酶、Flavourzyme、Protamex、Alcalase最适条件下进行单因素水解试验,以辅助TCA法测定多肽得率,并利用L9(33)正交试验,探讨了菜籽饼水解温度、加酶量和料液比对多肽得率的影响。结果表明,单因素试验得到多肽得率最高的酶为Alcalase;影响Alcalase水解菜籽饼多肽得率的因素主次顺序为:加酶量>水解温度>料液比;最佳水解条件为:温度60℃,加酶量3 000 U/g,料液比3%。在最佳条件下多肽得率为53.19%。  相似文献   

16.
丝素肽酶法生产工艺条件研究   总被引:8,自引:0,他引:8  
筛选出 2种水解效率较高的Alcalase酶和Flavourzyme 5 0 0MG酶水解丝蛋白 ,确定其最适酶解工艺条件为 :脱脂蚕茧用 10 0℃ ,0 5 %Na2 CO3溶液脱胶 3 0min(固液比 1∶15 )得丝素 ,经用 5 5℃、40 %CaCl2 水溶液溶解 (固液比 1∶10 )及MWCO5 0 0超滤膜 5 5℃超滤去离子后 ,用Alcalase酶于 pH7 5、5 5℃水解 12 0min(加酶量 0 3 5g/L) ,然后用Flavourzyme 5 0 0MG酶于pH6 5、5 0℃水解 2 40min(加酶量 0 2 0g/L)。在此工艺条件下 ,丝素蛋白经酶解降解成各种分子质量的多肽、短肽或氨基酸 ,其中分子质量 10 0 0 0u以内的多肽、短肽、氨基酸含量达到总量的 92 4% ,游离氨基酸含量为 14 6g/L ,占总量的 2 1%。  相似文献   

17.
付静  陈德经  曹米娜 《食品科技》2012,(2):66-68,72
以人工养殖大鲵为原料,酶解大鲵肌肉粉制备大鲵肽。结果表明,采用碱性蛋白酶、中性蛋白酶、Flavourzyme、Protamex、Alcalase 5种酶,在各酶最适pH和温度下,按照加酶量2000U/g、料液比1:25对大鲵肌肉粉酶解5 h,以肽得率为指标,Protamex酶解产物的肽得率最高;采用L9(33)正交试验进行Protamex水解大鲵肌肉粉的水解工艺研究,获得最佳工艺参数为:温度50℃、酶解时间7 h、料液比1:35。  相似文献   

18.
海蜇皮水解条件的研究   总被引:1,自引:1,他引:0  
以肽含量为指标,对海蜇皮的水解用酶进行了选择,认为风味蛋白酶和真菌酸性蛋白酶水解效果较好,并对这两种酶进行了单因素实验,结果表明:底物浓度为2%时,风味蛋白酶较好的水解条件为45℃、pH6.0、加酶量2700U/g,水解90min,肽提取率可达62.5%;真菌酸性蛋白酶较好的水解条件为55℃、pH2.5、加酶量2000U/g,水解90min,肽提取率可达74.7%。  相似文献   

19.
This study evaluated the influence of various enzymes on the hydrolysis of whey protein concentrate (WPC) to reduce its antigenic fractions and to quantify the peptides having iron-binding ability in its hydrolysates. Heated (for 10 min at 100°C) WPC (2% protein solution) was incubated with 2% each of Alcalase, Flavourzyme, papain, and trypsin for 30, 60, 90, 120, 150, 180, and 240 min at 50°C. The highest hydrolysis of WPC was observed after 240 min of incubation with Alcalase (12.4%), followed by Flavourzyme (12.0%), trypsin (10.4%), and papain (8.53%). The nonprotein nitrogen contents of WPC hydrolysate followed the hydrolytic pattern of whey. The major antigenic fractions (β-lactoglobulin) in WPC were degraded within 60 min of its incubation with Alcalase, Flavourzyme, or papain. Chromatograms of enzymatic hydrolysates of heated WPC also indicated complete degradation of β-lactoglobulin, α-lactalbumin, and BSA. The highest iron solubility was noticed in hydrolysates derived with Alcalase (95%), followed by those produced with trypsin (90%), papain (87%), and Flavourzyme (81%). Eluted fraction 1 (F-1) and fraction 2 (F-2) were the respective peaks for the 0.25 and 0.5 M NaCl chromatographic step gradient for analysis of hydrolysates. Iron-binding ability was noticeably higher in F-1 than in F-2 of all hydrolysates of WPC. The highest iron contents in F-1 were observed in WPC hydrolysates derived with Alcalase (0.2 mg/kg), followed by hydrolysates derived with Flavourzyme (0.14 mg/kg), trypsin (0.14 mg/kg), and papain (0.08 mg/kg). Iron concentrations in the F-2 fraction of all enzymatic hydrolysates of WPC were low and ranged from 0.03 to 0.05 mg/kg. Fraction 1 may describe a new class of iron chelates based on the reaction of FeSO4·7H2O with a mixture of peptides obtained by the enzymatic hydrolysis of WPC. The chromatogram of Alcalase F-1 indicated numerous small peaks of shorter wavelengths, which probably indicated a variety of new peptides with greater ability to bind with iron. Alcalase F-1 had higher Ala (18.38%), Lys (17.97%), and Phe (16.58%) concentrations, whereas the presence of Pro, Gly, and Tyr was not detected. Alcalase was more effective than other enzymes at producing a hydrolysate for the separation of iron-binding peptides derived from WPC.  相似文献   

20.
研究微波对酶解合浦珠母贝蛋白的影响,以水游离氨态氮含量和抗氧化活性为指标,选择较好的作用酶,通过单因素试验确定料液比、加酶量(E/S)、微波温度、微波功率及时间和后续水浴时间等因素水平,以水解度和DPPH自由基清除率为响应值,响应面法优化酶解合浦珠母贝蛋白工艺条件。结果表明,微波辅助蛋白酶酶解合浦珠母贝蛋白工艺条件为微波温度58 ℃、微波功率300 W、微波时间17 min、加酶量5 000 U/g,后续在58 ℃条件下再水浴1.5 h。预测响应值为0.224 4,水解度达到26.15%,验证实验证明与响应优化模型预测值误差不大,二次多元拟合度较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号