首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 993 毫秒
1.
氮对催化裂化汽油中烯烃加氢饱和反应的影响   总被引:1,自引:0,他引:1  
 采用硅胶吸附脱除原料中氮化物,得到氮含量不同而硫含量及烃类组成基本相同的4种催化裂化汽油原料。为了考察氮化物对催化裂化汽油选择性加氢脱硫过程烯烃加氢饱和反应(HYDO)的影响,在反应温度285 ℃、氢分压1.6 MPa、体积空速4.0 h-1及氢油体积比400的条件下,采用Co-Mo/Al2O3催化剂在中型固定床试验装置上进行了4种催化裂化汽油原料选择性加氢脱硫试验。结果表明,在催化裂化汽油选择性加氢脱硫过程中,氮化物对HYDO有明显的抑制作用;对直链烯烃和环烯烃加氢饱和反应抑制作用明显,但对支链烯烃加氢饱和反应抑制作用较小。硫含量和烃类组成相同的原料,烯烃饱和率相同时,氮含量较高的原料加氢产物研究法辛烷值比氮含量较低的原料加氢产物研究法辛烷值损失小。  相似文献   

2.
H2S对催化裂化汽油选择性加氢脱硫的影响   总被引:6,自引:1,他引:5  
在中型试验装置上考察了循环氢中H2S含量对催化裂化汽油加氢脱硫反应及烯烃加氢饱和反应的影响。结果表明,在催化裂化汽油选择性加氢脱硫过程中,循环氢中H2S对加氢脱硫反应具有抑制作用、对烯烃加氢饱和反应具有促进作用,随着循环氢中H2S含量的增加,催化剂的选择性下降。  相似文献   

3.
针对催化裂化汽油脱硫技术要求,介绍了一种以共沉淀法制备的载体负载Co、Mo活性金属组分的催化汽油加氢脱硫催化剂,考察了载体Mg/Al原子比、焙烧温度、活性金属含量对催化剂活性及选择性的影响,并对本研究的催化剂进行了1000h的稳定性试验。实验结果表明,采用Mg/Al=X 0、5、焙烧温度(y 200)℃所制备的载体,在其活性金属MoO3含量8%、CoO含量2.0%时,催化剂具有适宜的酸性中心数和最佳的脱硫选择性;本研究催化剂在1000h的试验运转过程中,具有较高的脱硫率和较低的烯烃饱和率,其活性稳定性良好。  相似文献   

4.
介绍了石油化工科学研究院开发的催化裂化原料加氢预处理(RVHT)和催化裂化汽油选择性加氢脱硫(RSDS)技术,以及2类生产低硫催化裂化汽油技术的特点和相应的催化剂.其中催化裂化原料加氢预处理RN-32V催化剂已经实现工业应用,新开发的RVS-420催化剂具有低温脱硫活性高和氢耗低的特点.催化裂化汽油选择性加氢脱硫RSDS-Ⅱ催化剂与第1代催化剂相比,相同脱硫率下,烯烃饱和率降低40%左右.  相似文献   

5.
制备了孔分布集中的氧化铝载体,并以饱和浸渍法制备了CoMo/Al2O3催化剂,考察了Co/(Co+Mo)原子比和助剂对催化剂加氢脱硫活性及表面性质的影响。结果表明:当Co/(Co+Mo)原子比为0.3左右时,催化剂的加氢脱硫活性最好;催化剂中引入适量的助剂,可以提高CoMo/Al2O3催化剂的活性。在此基础上研制出具有高加氢脱硫活性的RMS-30催化剂。中型装置评价及工业应用结果表明,与上一代渣油加氢脱硫催化剂相比,RMS-30催化剂具有更好的脱硫和脱残炭性能。  相似文献   

6.
生产硫质量分数不大于10μg/g的超低硫汽油是国内外清洁汽油发展的大趋势。催化裂化(FCC)汽油是国内外车用清洁汽油的主要调合组分,降低FCC汽油硫含量是生产超低硫汽油的关键。无论FCC汽油选择性加氢脱硫或吸附脱硫技术,生产超低硫汽油的主要问题是产品RON损失较大。抚顺石油化工研究院通过活性金属含量的改变、添加助剂、载体改性等,开发出了新一代高加氢脱硫选择性、低烯烃加氢饱和活性的ME-1催化剂。ME-1催化剂与参比剂相比,在反应温度低10℃的情况下,重馏分烯烃饱和率减少22.9%~32.4%,RON少损失1.3~1.6个单位,因此,用ME-1催化剂生产超低硫汽油时,产品RON损失大大减少。FCC原料预处理技术与采用新一代催化剂的FCC汽油选择性加氢脱硫技术组合是在辛烷值损失更低的情况下生产超低硫汽油的科学、经济的技术方案。  相似文献   

7.
催化裂化汽油脱硫降烯烃技术进展   总被引:1,自引:0,他引:1  
对催化裂化汽油脱硫降烯烃技术进展进行了综述.介绍了利用催化裂化工艺、催化剂和助剂的脱硫及降烯烃技术,以及催化裂化汽油的加氢脱硫降烯烃、吸附脱硫、氧化脱硫、膜法脱硫等技术进展.  相似文献   

8.
催化裂化汽油选择性加氢脱硫工艺流程选择   总被引:5,自引:2,他引:3  
研究了催化裂化汽油加氢脱硫各种可能的加工流程。结果表明,将汽油切割成轻重馏分分别进行处理,可以大幅度减少汽油烯烃在加氢脱硫过程中的饱和;轻馏分汽油中硫醇可以通过碱抽提方式脱除,不影响汽油烯烃含量;由于汽油中的二烯烃在较缓和条件下能促进胶质的生成,需要进行选择性脱二烯烃;由于循环氢中的硫化氢对加氢脱硫反应有抑制作用、对烯烃饱和反应有促进作用,应增加循环氢脱硫化氢系统;产品中的硫醇可经固定床氧化脱除。根据催化裂化汽油原料特性、反应动力学及工业应用需要确定选择性加氢脱硫的工艺流程。  相似文献   

9.
催化裂化汽油选择性加氢脱硫催化剂的研制及性能评价   总被引:6,自引:0,他引:6  
报道了催化裂化汽油选择性加氢脱硫催化剂HL-07的研制及小试性能评价结果,该剂对催化裂化汽油有较脱硫活性和较低的烯烃饱和活性,硫含量为1100μg/g的原料加氢脱硫后硫含量降为295μg/g,RON及MON的损失分别为0.6及0.7个单位。  相似文献   

10.
在中型试验装置上考察催化裂化汽油选择性加氢脱硫过程烯烃加氢饱和反应动力学行为。结果表明,在催化裂化汽油选择性加氢脱硫过程中,不同碳数烯烃的加氢饱和反应速率常数随碳数的增加而下降。在同一反应条件下,不同碳数烯烃的加氢饱和率随碳数的增加呈先降低后上升的趋势。总烯烃、直链烯烃、支链烯烃和环烯烃的加氢饱和反应均可以按照1级反应来处理。直链烯烃与支链烯烃的加氢饱和反应速率常数大于环烯烃。与支链烯烃相比,直链烯烃反应速率常数对温度变化更敏感。  相似文献   

11.
在九江分公司一套催化装置上进行了降低催化汽油硫含量和烯烃含量的催化裂化催化剂DOS的工业应用试验,试验结果表明,和GRV-C催化剂相比,液态烃、汽油和总液收产率有所增加,干气、焦炭的产率有所下降,反映出DOS催化剂具有裂化能力强、焦炭选择性好的特点。汽油烯烃含量降低7.8个体积百分点,汽油硫含量/原料油硫含量下降20.3ω%,说明DOS催化剂具有较好的降低汽油硫含量和烯烃含量的能力。  相似文献   

12.
采用浸渍法和混捏法对FCC汽油选择性加氢脱硫催化剂载体进行改性,研究结果表明,浸渍法改性仅能使催化剂的加氢脱硫选择性略有提高;混捏法改性可使载体的酸性显著下降,同时比表面积和平均孔径也有不同程度的降低,有利于提高催化剂的加氢脱硫选择性,当载体中碱性组分Mb含量为(x+40)%时,催化剂具有最佳的加氢脱硫选择性。10天的稳定性试验结果表明,改性载体所制备的催化剂具有良好的稳定性。  相似文献   

13.
为降低催化裂化汽油硫含量,石油化工科学研究院开发了增强型降低催化裂化汽油硫含量的催化剂(CGP-S),并在中国石化沧州分公司MIP装置上进行工业应用试验。结果表明,CGP-S催化剂具有显著降低催化裂化汽油硫含量的性能,与空白标定和CGP-2催化剂标定结果相比,当CGP-S催化剂占系统催化剂藏量的60%时,硫传递系数分别下降49.23%和27.43%。另外,CGP-S催化剂具有良好的重油转化能力和良好的产品选择性,能有效地改善汽油质量,与CGP-2催化剂相比,汽油选择性提高2.27个百分点,MON增加1个单位,汽油烯烃体积分数下降近4个百分点。  相似文献   

14.
加工中间基原料MIP工艺专用催化剂RMI Ⅱ的开发   总被引:1,自引:1,他引:0  
石油化工科学研究院针对MIP工艺加工中间基原料油,采用较常规REUSY沸石具有更好的重油裂化能力、汽油降烯烃性能以及具有良好焦炭选择性的可接近性改善的AIRY沸石,研制了RMI Ⅱ专用催化剂。实验室评价结果表明,RMI Ⅱ专用催化剂的重油裂化与抗碱氮中毒、汽油降烯烃、增产丙烯等性能均优于常规裂化催化剂。中试放大试验结果表明,RMI Ⅱ专用催化剂中试大样的重油反应性能很好地重复了小试催化剂的结果,并且催化剂的制备易于在国内现有FCC催化剂生产装置上直接实施生产。  相似文献   

15.
以NiO/HZSM-5为增强芳构化助剂,通过催化裂化与芳构化反应耦合,使催化裂化汽油和裂化气中的部分烯烃转化为芳烃,以降低汽油馏分中的烯烃含量,改善催化裂化汽油的组成。考察了助剂添加量对催化裂化催化剂降烯烃性能的影响,并与以CoAPO-11分子筛和HZSM-5与APO-11复合分子筛为助剂的催化裂化催化剂进行了对比。结果表明,NiO/HZSM-5的芳构化降烯烃效果最好,当添加量为5%时,汽油馏分中烯烃含量降低了5.8个百分点,而芳烃含量提高了9.7个百分点。并对催化裂化与芳构化反应耦合的机理进行了初步探讨。  相似文献   

16.
采用Co-Mo型催化剂在中型固定床加氢试验装置上考察催化裂化汽油选择性加氢脱硫过程中不同脱硫深度下循环氢中硫化氢含量对加氢脱硫反应(HDS)和烯烃加氢饱和反应(HYD)的影响。结果表明:硫化氢对加氢脱硫反应具有抑制作用,对烯烃加氢饱和反应具有促进作用,随着循环氢中硫化氢含量的增大,催化剂的选择性下降。不同反应苛刻度下,硫化氢对脱硫反应和烯烃加氢饱和反应的影响程度不一样,在较低苛刻度条件下,控制产品硫质量分数不大于50 μg/g时,硫化氢对脱硫反应和烯烃加氢饱和反应的影响相对较大;在较高苛刻度条件下,控制产品硫质量分数不大于10 μg/g时,硫化氢对脱硫反应和烯烃加氢饱和反应的影响相对较小。  相似文献   

17.
降低汽油硫含量的重油裂化催化剂的开发   总被引:3,自引:0,他引:3  
摘要:降低汽油硫含量和重油催化裂化系列催化剂DOS的开发针对降硫组元及活性组元进行了研究,开发了降硫功能组元L酸碱对化合物和筛选了与之相匹配的分子筛活性组元。评价结果表明,开发的L酸碱对化合物能增加催化剂对大分子硫化物的转化,促进脱硫反应的发生;筛选的分子筛与L酸碱对化合物协同作用具有较好的降烯烃和降硫功能。开发的降硫重油裂化催化剂DOS在ACE装置和固定流化床装置评价结果表明:与工业降烯烃催化剂相比,重油转化能力强,抗重金属污染能力强,汽油硫含量可降低20%以上。  相似文献   

18.
降低汽油烯烃含量裂化催化剂LBO-12的研制与开发   总被引:9,自引:0,他引:9  
探讨了催化裂化过程降低汽油烯烃的反应原理,研究了催化剂各组分对裂化汽油性质影响的规律性,围绕提高氢转移活性,提出制备降烯烃裂化催化剂的技术路线,并研制开发了新型LBO-12降烯烃催化剂,固定流化床反应器对中试样品的评价和工业应用结果表明,该催化剂在不损失汽油辛烷值的前提下,降低催化裂化汽油烯烃能力较强,并具有较高的水热活性稳定性和良好的抗重金属污染特性。  相似文献   

19.
催化裂化汽油催化改质降烯烃反应规律的试验研究   总被引:11,自引:1,他引:10  
利用催化裂化催化剂在小型提升管催化裂化装置上对催化裂化汽油催化改质降烯烃过程的反应规律进行了试验研究,详细考察了反应温度、剂油比、反应时间、催化剂活性以及催化剂类型对催化裂化汽油改质降烯烃过程的影响。试验结果表明,随着反应温度、剂油比、反应时间以及催化剂活性的增加,改质汽油烯烃含量降低的幅度增加。催化裂化汽油改质后,烯烃含量大幅下降,异构烷烃和芳烃含量有较大幅度的增加,烯烃含量可以降低到汽油新标准的要求,辛烷值基本维持不变,并且汽油收率高,液体收率维持在98.5%以上,(干气 焦炭)产率损失小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号