首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
在催化裂化反应条件下,研究了异丙苯主要裂化反应路径以及反应过程中反应温度和分子筛类型对苯产率和选择性的影响规律。结果表明,异丙苯裂化中的主要反应为脱烷基反应和侧链质子化裂化反应,苯主要来自异丙苯的脱烷基反应;高温和择形分子筛有助于提高异丙苯裂化生成苯的产率和选择性;在反应温度为550℃、质量空速为8h-1、剂油质量比为6的条件下,异丙苯在择形分子筛催化剂上裂化生成苯的产率和选择性分别可达40%和55%以上。  相似文献   

2.
以甲苯、异丙苯、正戊基苯和苯基环己烷为模型化合物,研究了烷基芳烃在酸性催化剂上的裂化反应性能及生成苯的化学反应路径。结果表明,甲苯很难发生裂化反应,苯的生成主要来自甲苯歧化反应;当烷基苯取代基碳原子数在3以上时,烷基苯裂化反应性能随着烷基侧链碳原子数的增加而增加,烷基侧链含有叔碳原子则更易裂化,苯的生成主要来自脱烷基反应;随着烷基苯取代基碳原子数的增多,烷基芳烃的侧链裂化反应选择性增强,可利用此反应特性控制反应路径,达到降低汽油苯含量的目的。  相似文献   

3.
以甲苯、乙苯、正丙基苯、正丁基苯、正戊基苯和正己基苯为模型化合物,在小型固定流化床反应器装置上进行催化裂化反应,研究6种不同侧链长度烷基苯在不同反应温度及不同分子筛(USY和REY)催化剂作用下生成苯的规律。结果表明:在催化裂化条件下,烷基苯转化生成苯的产率与烷基侧链的碳数密切相关;短侧链烷基苯主要通过烷基转移反应生成苯,长侧链烷基苯主要通过脱烷基反应生成苯;侧链碳数大于等于3时,裂化产物选择性增高,苯选择性降低;低温有利于抑制烷基苯裂化生成苯;高酸密度分子筛催化剂有利于降低长侧链烷基苯脱烷基生成苯的选择性,低酸密度催化剂有利于降低烷基苯裂化生成苯的转化率。  相似文献   

4.
 以对水稳定的N(C2H5)3HCl-2ZnCl2离子液体作主催化剂、阳离子双子表面活性剂Gm-s-m (m是亲油基尾链长度, s是连接基长度)作相转移催化剂,合成了十二烷基苄基氯。在反应温度55℃、物料配比n(十二烷基苯): n(多聚甲醛) : n(氯化锌) : n(Gm-s-m) =1: 3: 1.6: 0.01的条件下反应10 h,十二烷基苄基氯的选择性达98%以上。在几种相转移催化剂中,G12-6-12的催化性能最好。结果表明,使用N(C2H5)3HCl-2ZnCl2离子液体作催化剂,可以缩短反应时间,提高产物的收率和选择性。  相似文献   

5.
焦化蜡油催化裂化反应过程生焦特性   总被引:4,自引:1,他引:3  
 利用催化裂化工业平衡催化剂RGD-1,在提升管催化裂化中试装置和小型固定流化床实验装置上研究了大庆焦化蜡油催化裂化反应过程的生焦特性。采用吡啶红外法表征了积炭催化剂的表面酸性质,并对所生成焦炭的种类进行了分析。结果表明,在与直馏蜡油相同积炭率的条件下,焦化蜡油积炭催化剂的活性损失更大。焦化蜡油催化裂化反应生成的焦炭由吸附焦Cad、脱氢缩合焦Cdh和氢转移焦Cht构成。Cad由碱性氮化物在L酸中心化学吸附所形成,是导致催化剂活性大幅度下降的主要原因,在催化裂化加工焦化蜡油过程中,必须牺牲部分催化剂的L酸中心以供Cad沉积。常规反应条件下的焦炭组成中,在催化裂化加工焦化蜡油过程中,必须牺牲部分催化剂的L酸中心以供Cad沉积。常规反应条件下的焦炭组成中,Cad的质量分数约占20%;Cdh是焦炭的主要来源,质量分数占总生焦量的60%左右;氢转移焦Cht的生成量受二次反应进行的程度影响很大,适当提高反应温度、缩短反应时间能够抑制氢转移反应的进行,减少Cht的生成量,有利于降低焦炭选择性。  相似文献   

6.
综述了FCC过程中噻吩类硫化物的裂化脱硫机理和转化途径,并从转化率和选择性出发,分析了不同结构的噻吩类硫化物的反应特点。在FCC条件下,噻吩的转化率较低,而带有烷基侧链的噻吩和苯并噻吩均具有较高的转化活性,其中短侧链的烷基噻吩类硫化物易于发生异构化和脱烷基反应,而长侧链的烷基噻吩类硫化物易于发生侧链裂化和环化反应;反应体系中的其他烃类及催化剂的性质也对噻吩类硫化物的反应路径和转化率有一定的影响,其中大分子烷烃和环烷烃等供氢剂和氢转移活性高的催化剂均有利于噻吩类硫化物的裂化脱硫。在此基础上,进一步总结了典型的噻吩类硫化物的转化网络。  相似文献   

7.
 用3种酸性不同的Y型分子筛,采用孔饱和共浸渍法制备了NiW/Y-Al2O3双功能加氢裂化催化剂,以正癸烷为模型化合物,考察了硫化态NiW/Y-Al2O3催化剂上的活性、异构癸烷收率和二次裂化与Y型分子筛酸性的关系。结果表明,增加Y型分子筛上的中强酸量,能够提高NiW/Y-Al2O3催化剂的活性。反应温度较低(330℃)时,Y型分子筛中的中强B酸量和二次裂化相关;而反应温度较高(380℃)时,Y型分子筛的总酸量与二次裂化相关。反应温度升高,正癸烷转化率增加,异构选择性降低,异构癸烷收率先增加后降低,出现1个峰值。  相似文献   

8.
 采用脉冲微反装置,对不同骨架结构的C5~C8单体烯烃的裂解行为进行了实验研究。结果表明,在脉冲、高温、短时间的反应条件下,C6、C7和C8烯烃主要发生一次裂解反应,其中C7烯烃裂解生成丙烯的速率最快,而C6烯烃裂解生成丙烯的选择性最高,约为75%,C8烯烃裂解生成丙烯的选择性最低。烯烃在不同催化剂上的裂解速率相差较大,但裂解产物的选择性相差不大。在不同的催化剂上,正构烯烃与同碳数的2-甲基取代烯烃的裂解速率比值基本保持不变。  相似文献   

9.
 为了研究催化裂化汽油中噻吩类含硫化合物的生成机理,分别在小型固定流化床(FFB)装置和小型流化床装置(ACE)中考察了庚烯与H2S、己硫醇在固体酸催化上的反应。结果表明,在固体酸催化剂上己硫醇主要分解为H2S与烯烃,转化为噻吩类含硫化合物的概率很小。因此,在庚烯与H2S反应中,噻吩及烷基噻吩的生成不是以饱和硫醇为过渡态,而是以不饱和硫醇为过渡态。烯烃在催化剂的L酸中心作用下失去负氢离子生成烯基正碳离子,烯基正碳离子与H2S结合生成不饱和硫醇,不饱和硫醇接着进行负氢离子转移、环化,并进一步脱氢生成噻吩或烷基噻吩。在400℃~500℃下, 噻吩及烷基噻吩的生成反应是吸热反应,其平衡收率比较高。不饱和硫醇过渡态经负氢离子转移、环化后再夺氢生成四氢噻吩的反应是放热反应, 平衡收率很低。固体酸催化剂提供了大量具有脱氢活性中心的L酸,且烯烃与H2S在贫氢的酸催化环境里反应只有生成具有共轭结构的五元噻吩才是最稳定的,因此噻吩或烷基噻吩是烯烃与H2S反应的主要产物。噻吩与烯烃发生烷基化反应生成烷基噻吩,烷基噻吩在酸性催化剂表面上发生负氢离子转移、环化、脱氢反应生成甲基苯并噻吩。  相似文献   

10.
 以苯与工业混合重烯烃(C14=-C18=). )为原料, 固载化AlCl3为催化剂, 合成了三次采油用表面活性剂原料—重烷基苯, 采用N2吸附、原子吸收及化学分析方法表征了载体的比表面积、孔径分布及AlCl3固载量, 考察了载体性质、反应时间、反应温度和原料组成对催化剂活性、选择性及稳定性的影响. 结果表明, 载体孔径对催化剂稳定性起主要作用, 以介孔SiO2为载体制备的AlCl3 /SiO2催化剂稳定性较好, 在反应温度80℃、反应时间3h、烯烃完全转化的情况下可以重复使用7次; 增加反应时间、提高原料苯/烯摩尔比和反应温度有利于提高催化剂稳定性; 但是较高的反应温度会降低产物中2-LAB(苯环接于烯烃第2碳位的烷基苯)的选择性.  相似文献   

11.
张旭  周祥  郭锦标  王鑫磊 《石油化工》2013,42(1):104-110
详述了近年来国内外在甲基环己烷(MCH)催化裂化转化途径和机理研究中取得的成果。从单环环烷烃的催化裂化反应机理出发,分析了不同催化剂和工艺条件下的MCH转化反应特点。在催化裂化条件下,MCH主要发生开环、β-裂化、氢转移、异构化、烷基转移和脱烷基等六大类反应。着重讨论了MCH在不同催化体系下的反应性能、反应机理及动力学模型的建立;在此基础上,进一步总结了典型的MCH催化裂化反应网络。展望了环烷烃催化裂化催化剂研制和工艺优化的发展方向。  相似文献   

12.
采用脉冲微反装置,在反应温度为550~650 ℃、低转化率(小于 15%)条件下,研究了2,5-二甲基己烷在石英砂和ZRP分子筛上的热裂化和催化裂化反应,分析了甲烷的生成机理。结果表明:2,5-二甲基己烷热裂化反应的主要产物是甲烷、丙烯和异丁烯,在链传递阶段,甲基自由基夺氢可由3条反应路径生成甲烷,叔C-H键对甲烷选择性的贡献大于90%;ZRP分子筛的择形催化作用影响2,5-二甲基己烷催化裂化的转化率和产物分布,甲烷由质子化裂化反应生成;分析热裂化反应与质子化裂化反应对甲烷生成的影响可知,甲烷主要由热裂化反应生成,且随反应温度升高,热裂化反应对甲烷生成的贡献逐渐增大。  相似文献   

13.
1. Introduction The alkylation of benzene with propylene produces cumene, a very important petrochemical feedstock used for the production of phenol and acetone (Yang, 1990). More than 90% of the global phenol demand is derived from cumene. Hence, the growth rate of cumene production is closely associated with that of phenol. Cumene demand is expected to grow by about 3.5% annually over the next 5 years (Kleinloh, 1997). The global cumene capacity from some 40 plants worldwide is about 8 mil…  相似文献   

14.
选用一种ZSM-5分子筛,采用适当的沸石外表面改性方法制备了一种C8芳烃择形脱乙基催化剂。该催化剂的适宜制备条件为:使用分子筛硅铝比为A的ZSM-5;以一种适当的含硅化合物对催化剂进行1次液相沉积改性;硅烷化焙烧过程中空气流速为(D+100~D+200)mL/min;金属铂负载量为E%。该催化剂能使进入沸石孔道的乙苯高效脱除乙基,同时具有抑制二甲苯歧化和烷基转移副反应的功能。在反应温度为400℃、反应压力为1.8 MPa、氢油摩尔比为1、空速为15 h-1的条件下,在所制备的C8芳烃择形脱乙基催化剂作用下,乙苯转化率达到90.19%、二甲苯收率达到98.81%。  相似文献   

15.
FeCl_3-氯代丁基吡啶离子液体催化苯与丙烯烷基化   总被引:10,自引:2,他引:8  
孙学文  赵锁奇 《石油化工》2006,35(9):819-823
研究了FeC l3-氯代丁基吡啶(FeC l3-[bpc])离子液体催化苯与丙烯烷基化生产异丙苯。实验结果表明,FeC l3-[bpc]离子液体经HC l改性后,在温和的反应条件下,丙烯的转化率与异丙苯的选择性得到显著改善,在20℃、0.1M Pa、反应时间5m in、苯与丙烯的摩尔比为10∶1、FeC l3-[bpc]离子液体与苯的质量比为1∶100的条件下,丙烯的转化率由改性前的83.60%提高到100.00%,异丙苯的选择性由90.86%提高到98.47%。实验中还发现,若将该反应分为两个阶段进行,将会获得很好的反应效果。第一阶段主要是烷基化反应,在低温下得到较高的丙烯转化率;第二阶段主要是烷基转移反应,通过适当升高反应温度提高异丙苯的选择性。  相似文献   

16.
本研究的目的是通过考察催化剂中Y分子筛和ZSM-5分子筛的优化组成,来开发新型催化剂以实现催化裂化过程中同时获得低烯烃含量汽油和高丙烯产率。本研究中制备了5种不同Y分子筛和ZSM-5分子筛比例的复配催化剂,采用小型固定流化床反应器,以催化汽油为原料,在480℃反应温度下考察了复配催化剂中Y和ZSM-5的协同作用对质子化裂化、β-断裂、齐聚和氢转移反应选择性的影响。结果表明:复配分子筛催化剂(Y:ZSM-5=1:4)具有最高的质子化裂化和β断裂反应的能力,甚至高于纯ZSM-5分子筛催化剂。另一方面,复配分子筛催化剂(Y:ZSM-5=3:2)的氢转移反应能力最高,而纯Y分子筛催化剂具有最高的齐聚反应能力。对所有5种催化剂而言,提高转化率均会增强质子化裂化和氢转移反应的选择性,但会减少β-断裂反应的选择性。然而,转化率增加时,齐聚反应的选择性未见明显增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号