首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 225 毫秒
1.
用有限时间热力学方法优化恒温热源条件下闭式中冷回热燃气轮机循环的生态学性能,计入工质与高低温侧换热器、回热器以及中冷器之间的热阻损失、压气机内不可逆压缩和涡轮内部不可逆膨胀损失,导出了循环生态学函数解析式,通过数值计算优化各换热器热导率分配以及中间压比和总压比,得到了循环最优生态学性能.  相似文献   

2.
考虑高低温侧换热器、回热器和中冷器的热阻损失,以及压气机和涡轮中的不可逆损失,以功率为优化目标,借助数值计算,研究了恒温热源条件下不可逆闭式中冷回热布雷顿循环输出功率最大时高低温侧换热器、回热器和中冷器的热导率分配以及中间压力与总压比的关系。  相似文献   

3.
计入工质与高低浊侧换热器、回热器和中冷器的热阻损失以功率为优化目标,借助数值计算,研究了变温热源条件下内可逆闭式中冷回热布雷顿循环输出功率最大时,高低温侧换热器、回热器和中冷器的热导率分配以及中间压比与总压比的关系;分析了工质与热源间的热容率匹配对双重最大功率的影响。  相似文献   

4.
计入高低温侧换热器和中冷器的热阻损失、压气机和涡轮机中的不可逆压缩和膨胀损失及管路中压力损失,用有限时间热力学方法导出了变温热源条件下不可逆闭式燃气轮机中冷循环功率和功率密度(功率与循环中最大比容之比)的解析式;分别以功率和功率密度为目标,优化了中间压比、高低温侧换热器及中冷器热导率分配,并对结果进行了比较.  相似文献   

5.
恒温热源不可逆闭式中冷回热燃气轮机循环的功率和效率   总被引:4,自引:0,他引:4  
用有限时间热力学方法首次研究了恒温热源条件下不可逆闭式中冷回热燃气轮机循环的功率、效率以及中间压比特性,导出了无因次功率及效率的解析式。通过数值计算方法,分析了中冷度、回热度对循环最优功率、最优效率及其对应的中间压比分配的影响。  相似文献   

6.
采用有限时间热力学的思想,建立了高炉余能余热驱动的变温热源不可逆中冷回热(ICR)布雷顿热电联产(CHP)装置模型.以(火用)输出率和炯效率为目标优化了装置的性能,发现回热器对炯性能的影响在所有换热器中是最小的,当给定回热器热导率分配时,分别存在两个最佳的中间压比和两组最佳的高、低温侧和热用户侧换热器以及中冷器的热导率分配使炯输出率和炯效率取得最大值.进一步优化总压比,得到了双重最大(火用)输出率和炯效率.增大高炉余热源入口温度、压力恢复系数、压气机和涡轮机效率有利于提高装置的炯性能,在一定范围内,热用户温度越高越好.最后发现分别存在最佳的工质与热源间的热容率匹配使(火用)输出率和(火用)效率取得三重最大值.  相似文献   

7.
考虑高低温侧换热器、回热器和中冷器的热阻损失,以功率为优化目标,对恒温热源条件下内可逆闭式布雷顿循环的高低温侧换热器、回热器和中冷器的热导率以及中间压比的分配进行了优化。借助数值计算,分析了一些主要循环特征参数对最大功率及相应热导率和中间压比分配、双重最大功率的影响。  相似文献   

8.
以功率密度——循环输出功率与最大比容之比——作为优化目标。用有限时间热力学方法 ,对恒温热源条件下内可逆闭式燃气轮机循环的高、低温侧换热器的热导率分配进行了优化。由数值算例给出了循环的一些主要特征参数对热导率最优分配和最大功率密度的影响 ,以及功率密度最大时的最佳热导率分配与最佳压比之间的对应关系。  相似文献   

9.
用有限时间热力学理论和方法研究了恒温热源不可逆中冷回热布雷顿热电联产装置的火用经济性能,导出了无量纲利润率和火用效率的解析式.以利润率和火用效率为目标,通过数值计算对热导率的分配、中间压比的选取进行了优化.得到了最大利润率和火用效率.进一步对总压比进行优化,得到了双重最大利润率,但火用效率不存在双重最大值.详细分析了设...  相似文献   

10.
变温热源内可逆中冷回热布雷顿循环功率密度优化   总被引:1,自引:0,他引:1  
以功率密度为目标,用有限时间热力学的方法,通过数值计算,对变温热源条件下的内可逆中冷回热布雷顿循环的高、低温侧换热器的热导率分配和中间压比、循环总压比和工质与热源间的热容率匹配进行优化。分别得到了最大功率密度、双重最大功率密度和三重最大功率密度,并分析了热力学参数对高低温侧换热器的热导率最优分配、最佳中间压比、最大功率密度和双重最大功率密度的影响。  相似文献   

11.
建立了开式燃气轮机中冷回热再热(ICRR)循环有限时间热力学模型,导出了循环功率和效率解析式,优化了气流沿通流部分的压降(或低压压气机进口空气质量流率)和中间压比,得到最大功率;并在给定燃油流率的情况下,优化了气流沿通流部分的压降和中间压比,得到最大热效率,进一步在给定低压压气机进口和动力涡轮出口总面积的情况下,优化两者面积分配比,得到双重最大热效率.  相似文献   

12.
建立了考虑涡轮叶片冷却和实际气体性质的中冷回热循环三轴燃气轮机模型,在给定叶片表面耐热温度的条件下通过优化总压比和中间压比分配,得到最优性能。研究表明:分别存在最佳的总压比和中间压比使得燃气轮机循环的比功率和效率达到双重最大值,双重最大比功率随中冷度的增大而增大,随回热度的增大略有减小,双重最大效率随中冷度和回热度的增大而增大。  相似文献   

13.
用有限时间热力学理论和方法研究了恒温热源不可逆中冷回热布雷顿热电联产装置的经济性能,导出了无量纲利润率和效率的解析式.讨论了总压比给定和总压比变化两种情形,优化了中间压比,通过数值计算详细分析了各设计参数对循环一般性能和最优性能的影响,发现回热和中冷能够较大地提高装置的利润率和效率,并且随压比的变化对利润率和效率具有不同的影响.讨论了利润率和效率之间的关系,其特性关系为扭叶型.最后发现分别存在最佳用户侧温度使得利润率和效率取得双重最大值.  相似文献   

14.
建立了考虑压降的开式回热燃气轮机热电冷联产装置的有限时间热力学模型,导出了各个部件的相对压降和各个热流率与压气机进口相对压降的关系式,以第一定律效率、[火用]输出率、[火用]效率和利润率为目标,在无燃料消耗和装置尺寸约束下,通过数值计算发现分别存在最佳的压气机进口相对压降使[火用]输出率和利润率取得最优值,进一步优化压比,得到了最大[火用]输出率和利润率,分别存在最佳的供热温度使最大[火用]输出率和利润率取得双重最大值,以利润率为设计目标能够减小装置的尺寸.在燃料消耗和装置尺寸约束下,优化了压气机进口相对压降,得到了最优效率,同时各部件流通面积分配也得到了优化.回热能够增大装置的利润率和效率.  相似文献   

15.
用有限时间热力学理论和方法研究了恒温热源不可逆中冷回热布雷顿热电联产装置的经济性能,导出了无量纲利润率和效率的解析式。讨论了总压比给定和总压比变化两种情形,优化了中间压比,通过数值计算详细分析了各设计参数对循环一般性能和最优性能的影响,发现回热和中冷能够较大地提高装置的利润率和效率,并且随压比的变化对利润率和效率具有不同的影响。讨论了利润率和效率之间的关系,其特性关系为扭叶型。最后发现分别存在最佳用户侧温度使得利润率和效率取得双重最大值。  相似文献   

16.
考虑实际气体的热力性质,建立了三轴燃气轮机中冷循环的热力模型,以循环功率和效率为优化目标,对中间压比(或低压压气机压比)的分配进行了优化,同时分析了低压压气机进口气流温度、中冷度和总压比对循环性能的影响。研究发现,与不考虑实际气体热力性质的研究结论相比,循环功率或效率最大时的中间压比并不等于高压压气机压比。  相似文献   

17.
基于有限时间热力学理论,对恒温热源内可逆Lenoir循环进行功率效率特性分析与优化,得到换热器总热导给定的条件下循环的最大功率和最大效率。结果表明:在给定高、低温侧换热器热导的条件下,循环的功率、效率特性呈现"点"的特征;在高、低温侧换热器热导可优化的条件下,存在最佳的热导分配,使得循环的功率或效率取得最大值。高、低温热源温比增大或换热器总热导增大时,循环的功率、效率都将增大。  相似文献   

18.
太阳能驱动闭式简单燃气轮机循环热力学优化   总被引:4,自引:1,他引:4  
研究太阳能通过换热器的闭式简单燃气轮机循环有限时间热力学性能,导出内可逆循环的最佳功率与效率间的关系,并得到最大功率输出及其相应的效率界限。用压气机和涡轮内效率表征循环内不可逆性,可得实际不可逆循环的最优性能。所得结果对闭式简单燃气轮机装置热力参数的选择有定指导意义。  相似文献   

19.
不可逆闭式布雷顿热电联产装置火用经济性能优化   总被引:4,自引:2,他引:2       下载免费PDF全文
应用有限时间热力学方法,研究了恒温热源条件下不可逆闭式布雷顿联产装置的火用经济性能,导出了利润率及火用效率解析式.利用数值计算方法,以利润率为目标,对热导率分配和压比的选取进行了优化.研究了最优利润率及相应火用效率特性,并分析了各种联产设计参数对联产优化性能的影响.结果表明,对于给定的总热导率,在高温、低温和用户侧换热器之间,存在唯一的最佳热导率分配比和唯一的最佳压比,使得装置的无因次利润率取得最大值;同时存在最佳用户温度.  相似文献   

20.
用有限时间经济分析法,考虑换热器、压缩机和膨胀机的不可逆性,研究变温热源条件下回热式不可逆空气制冷机的最优性能,导出利润率解析式。用数值算例分析利润率与压比的关系,优化循环中换热器和回热器的热导率分配及工质与热源间的热容率匹配,分析总热导率、压缩机和膨胀机的效率等参数对利润率与热导率分配、热容率匹配关系的影响。通过价格比,将利润率目标与制冷率、熵产率及生态学目标建立联系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号