首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
气相沉积生长单壁纳米碳管束   总被引:2,自引:0,他引:2  
采用流动催化热解碳氢化合物方法制备出具有一定取向的单壁纳米碳管束。研究了单壁纳米碳管束的生长过程,发现单壁纳米碳管的生长过程是在气流飘浮单个催化剂颗粒中完成。这与热解碳氢化合物制备定向的多壁纳米碳管在基体催化上生长过程有所不同。根据单壁纳米碳管生长过程,推测出单壁纳米碳管束生长速度的数量级为10^-5m/s。  相似文献   

2.
纳米碳管是一种性能优异的新型功能材料.利用循环失效后的AB5型贮氢合金电极材料作为反应催化剂、乙炔气体作为原料气体通过CVD法制备出多壁纳米碳管,研究了经过破碎、清洗、氧化处理后的失效AB5型贮氢合金电极材料在合成纳米碳管中的催化性能,讨论了不同氧化温度处理催化剂对纳米碳管产率、形貌和结构稳定性的影响.结果表明,氧化处理温度对催化剂的催化效能有明显的影响,600℃为最佳氧化处理温度.以氧化处理后的失效AB5型贮氢合金电极材料作为催化剂制备碳纳米管,方法简单易行,为废旧镍氢电池负极材料的回收再利用提供了一种新的思路.  相似文献   

3.
高质量小直径单壁纳米碳管的CVD法制备   总被引:1,自引:1,他引:0  
使用溶胶凝胶法制备了Fe/Mo/MgO催化剂,用化学气相沉积法在1000℃下催化裂解甲烷,制备了高质量的单壁纳米碳管.用SEM、TEM、HRTEM、TGA和Raman等方法对制备的纳米碳管粗产品进行了表征.结果表明:该产物确为单壁纳米碳管,单壁纳米碳管直径十分均一,在0.86~0.90nm之间,且其形态基本上都是以束状存在;本方法所制得粗产物中单壁碳管的含量在30%以上.  相似文献   

4.
纳米碳管储氢机理的电化学研究   总被引:4,自引:4,他引:0  
对流动催化剂法制备的平均直径为6nm的多壁纲米碳管(Multi-walled carbon nanotubes,MWNTs)进行纯化处理,提纯后的多壁纳米碳管利用透射电镜(TEM)表征和电化学储氢研究。同时对该纳米碳管电极进行了自放电实验。结果表明:多壁纳米碳管具有奶高的电化学储氢容量(739mAh/g),但氢与多壁纳米碳管之间的作用力很微弱,氢很容易从多壁纳米碳管中逃逸出。另外,通过对多壁纳米碳管的气相储氢性能的测试,根据实验结果推测;纳米碳管电化学储氢和气相储氢的主要吸附机理相同,即都是物理吸附。  相似文献   

5.
SiO2表面溅射铁膜后用CVD法制备了定向纳米碳管。用扫描电镜、透射电镜和高分辨透射电镜对顶部催化剂及包裹于管内的催化剂、纳米碳管的结构和所形成的竹节状形貌进行了观察。以液态生长纳米碳管为基础提出了一种纳米碳管生长机制。  相似文献   

6.
CVD宏观量半连续制备纳米碳管的研究   总被引:4,自引:0,他引:4  
研究了以乙炔为基本原料,用N做载流气体;以纳米钻颗粒为催化剂在700~800℃常压下纳米碳管的宏观量制备.粗产品中纳米碳管的含量接近50%,而且纳米碳管缺陷很少,直而长,石墨化好.纳米碳管的形核过程是因为碳在催化剂表面分布不均匀造成的.纳米碳管的生长极限在15min左右,然后生长变得缓慢,纳米碳管的一般长度在5~30μm.  相似文献   

7.
采用多元醇法制备镁-镍合金纳米粉末,并以此为催化剂制备纳米碳管,利用比表面和孔径分布测定仪、X射线衍射仪和透射电镜,研究镁-镍合金催化剂的性能和纳米碳管的生长模式。结果表明:Mg∶Ni值对镁-镍合金催化剂特性影响较大,其中Mg∶Ni为1的催化剂颗粒比表面积较大且平均粒径较小;聚乙烯吡咯烷酮(PVP)用量增大,有利于提高催化剂颗粒的比表面积、减小平均粒径,但用量过大不利于Mg2Ni合成。在以镁-镍合金为催化剂制备碳纳米管的过程中,首先在催化剂表面形成碳膜,随后形成的碳膜将前期形成的碳膜及催化剂颗粒向外推挤,催化剂颗粒移动后遗留下中空隧道,最终形成碳管,由于纳米碳管尖端的催化剂颗粒反应后失去催化活性,碳管的生长动力主要来自碳管根部。  相似文献   

8.
以Co-MCM-41作催化剂,采用化学气相沉积(CVD)法催化热解无水乙醇制备纳米碳管(CNTs),然后将纳米碳管在120℃下用浓硝酸回流,进行纯化及表面酸氧化改性处理。通过XRD、FT-IR、TEM、N2吸附-脱附和Raman光谱等分析手段对酸处理前后的纳米碳管进行了表征。结果表明制备出品质较好、管径均匀、管壁较厚、顶端开口的多壁纳米碳管。浓硝酸氧化处理后在纳米碳管的表面存在羧基和羟基等官能团。  相似文献   

9.
周龙梅  刘宏英  崔平  姜炜  周建 《材料导报》2005,19(Z1):110-111
以二茂铁为催化剂、苯为碳源、噻吩为生长促进剂,采用气相催化热解法制备了纳米碳管,并运用TEM、Raman、XRD等对纳米碳管的外观形貌、结构、晶化程度等进行了观察研究.结果表明:在1155℃下能制备出管径20~100nm的纳米碳管,其最大产量是催化剂用量的350%.  相似文献   

10.
化学气相沉积法快速生长定向纳米碳管   总被引:20,自引:16,他引:4  
利用化学气相沉积法,采用二甲苯为碳源,二茂铁为催化剂,氮气作保护气,在石英基底上催化裂解生长定向纳米碳管,试验结果表明:在775℃,120min的条件下,可生长出长达200μm厚的定向纳米碳管薄膜;在775℃,反应时间为60min~120min时,纳米碳管的长度为100μm~200μm,而纳米碳管的直径变化不明显。而无氢气,较高的反应温度和连续的催化剂供给对快速生长定向纳米碳管有重要的影响。  相似文献   

11.
The lamellar Fe/Al2O3 catalysts were prepared by sol-gel method, and then with these prepared catalysts, carbon nanotubes (CNTs) were synthesized by catalytic chemical vapor deposition (CCVD) method using C2H2 as precursor. The as-prepared CNTs and Fe/Al2O3 catalysts were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy and Raman spectrum. The results proved that the as-prepared CNTs actually existed in bundles. And the growth of CNTs bundles should be attributed to the lamellar catalysts, which supported the bottom growth mechanism of CNTs. The transition metal of Mo was not introduced in catalysts to produce CNTs bundles, which was different with others’ results.  相似文献   

12.
In this study, a simple but effective method to realize excellent comprehensive performances in polypropylene (PP)/multi-walled carbon nanotubes (MWNTs) was developed. Before melt extrusion, solid-state iPP powders and MWNTs were pre-mixed upon high-speed rotating. By this way, the dispersion extent of nanotubes was significantly improved as comparing to the common one-step melt extrusion strategy. As validated by scanning electron microscopy, most of MWNTs exist as a form of filament bundles with size of hundreds nanometers; no obvious agglomerate was found even at high MWNTs content, 5%. The improvements of the major mechanical properties and electric conductivity were much efficient for the composites obtained via the two-step process of rotating solid-state mixing (RSSM)-plus-melt extrusion. The tensile strength, Young’s modulus and impact strength at 5% MWNTs content were enhanced for 35%, 42% and 45%, respectively, indicating an excellent strength-rigidity-toughness balance, which was hardly achieved in polyolefin/carbon nanotubes composite. It is believed that the method developed in this study is so far the most effective and convenient for efficiently dispersing nanotubes into the nonpolar, intractable thermoplastics and resulting in good properties, among a variety of fabrication method suggested in the previous researches. Importantly, the used RSSM equipment is a kind of frequently used dispersion machine, thus it has tremendous potential to be applied in industrial producing immediately.  相似文献   

13.
Multiwalled carbon nanotubes (MWNTs) were synthesized using a hot filament assisted chemical vapor deposition (CVD) at the atmospheric pressure at a substrate temperature of 550 °C. The size of nanotubes was controlled by changing the size of catalyst particles. The structure and composition of these nanotubes were investigated using scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The electron field emission current of MWNTs was also measured. It was found that the nanotubes with smaller the diameter had higher the emission current levels though synthesis conditions except catalyst particles were the same. These as-grown MWNTs had emission current densities of 6.5 mA/cm2 and 2.5 mA/cm2 at 1 V/μm for 5-8 nm and 20 nm size carbon nanotube samples, respectively. The results indicated that the MWNTs synthesized had low emission threshold voltages and high emission current levels that are favorable properties for field emission-based display device applications.  相似文献   

14.
通过静电纺丝法制备出多壁碳纳米管(MWNTs)增强聚乳酸(PLA)复合超细纤维膜。用扫描电镜、透射电镜、差示扫描量热仪、热重分析仪对MWNTs/PLA复合超细纤维进行了表征,并进行了拉伸测试。结果表明,MWNTs分散于PLA纤维中,随着MWNTs含量的增加,纤维平均直径先减小后增大,MWNTs的加入会降低PLA的结晶度...  相似文献   

15.
《Materials Letters》2007,61(23-24):4549-4552
Carbon nanotubes were deposited on non-conductive optically transparent sapphire substrates of various crystallographic orientations and on amorphous quartz glass. The substrates were covered by catalysts in which trivalent iron, Fe(III), was the dominant component. The nanotubes were synthesized by catalytic hot filament chemical vapor deposition. During their production, they form bundles composed of multiwalled carbon nanotubes and have a length of up to several tens of micrometers, thickness between 1 and 4 μm, and a non-circular cross-section. The growth of these bundles on a non-porous non-conducting optically transparent substrate was confirmed by scanning electron microscopy and by Raman spectroscopy.  相似文献   

16.
We have previously shown that high-purity multiwalled carbon nanotubes (pristine MWNTs) can be prepared from a mixture of xylene-ferrocene (99 at% C:1 at% Fe) inside a quartz tube reactor operating at approximately 700 degrees C. In a similar process, approximately 3 g of melamine (C3H6N6) was introduced during the growth of MWNTs to prepare nitrogen-doped nanotubes. The structural and electronic properties of nitrogen-doped MWNTs were determined by scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), and thermopower measurements. The individual nitrogen-doped nanotube exhibits a bamboo-like structure and comprises 6-16 tube walls, as evidenced by HRTEM studies. The EELS measurements yielded an average nitrogen content of approximately 5 at% in the doped tubes. The thermoelectric power data of nitrogen-doped MWNTs remained negative even after exposure to oxygen for an extended period of time, suggesting that nitrogen doping of MWNTs renders them n-type, consistent with scanning tunneling spectroscopic studies on similar nanotubes.  相似文献   

17.
Since their discovery carbon nanotubes (CNT) have attracted much attention due to their singular physical, mechanical and chemical properties. Catalytic chemical vapor deposition (CCVD) of hydrocarbons over metal catalysts is the most promising method for the synthesis of CNT, because of the advantages of low cost and large-scale production and the relatively low temperature used in the process, compared to the other methods (laser ablation and discharge between graphite electrodes). In this study, CNT were synthesized by CCVD using Ni supported on SiO2 as a catalyst. The carbon deposited in the reaction was analyzed by Raman spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of reaction temperature and Ni loading on the carbon nanotube formation were evaluated. The catalyst with 5% Ni favored high yield of CNT at lower temperature, with abundant “multi-walled carbon nanotubes” (MWNTs) at 625 °C, while single-walled carbon nanotubes (SWNTs) and MWNTs were obtained at 650 °C. With an increase in the reaction temperature a marked decrease in the yield of CNT was observed, probably due to the sintering of the catalyst. The catalyst with 1% Ni gave SWNTs with a high degree of order at all reaction temperatures, but in low quantity.  相似文献   

18.
Water-soluble polymer brushes with multi-walled carbon nanotubes (MWNTs) as backbones were synthesized by grafting 2-hydroxyethyl methacrylate (HEMA) from surface functionalized MWNTs via in situ surface thiol-lactam initiated radical polymerization. MWNTs were functionalized with 2-mercaptoethanol and used as initiators in the polymerization of HEMA in the presence of butyrolactam. FT-IR, XPS, 1H NMR, GPC and TGA were used to determine chemical structure and the grafted polymer quantities of the resulting product. The covalent bonding of PHEMA to the MWNTs dramatically improved the water dispersibility of MWNTs. The average thicknesses of the polymer brushes in the functionalized MWNTs were detected with electron microscopy (SEM and TEM) and images indicated that the nanotubes were coated with polymer layer.  相似文献   

19.
以多壁碳纳米管为载体,用液相还原法制备了Pt/MWNTs催化剂,通过XRD、TEM等技术对催化剂进行了表征,并将所制催化剂组装成燃料电池,以H2、O2为反应气,测试了催化剂的性能,结果显示Pt/MWNTs催化剂具有优良的电催化活性。  相似文献   

20.
以带程序升温装置的管式电阻炉为实验装置,采用化学气相沉积法,在一定的工艺条件下裂解二茂铁与双鸭山精煤的混合物制备出多壁碳纳米管.采用透射电镜、Raman光谱以及X射线衍射技术对碳纳米管产物进行表征,同时研究了碳纳米管的生长机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号