首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
铝材表面Ni—MoS2自润滑复合镀层及其性能   总被引:3,自引:0,他引:3  
采用扫描电镜,化学分析法和电化学方法,详细研究了阴极电流密度,镀液温度,镀液中MoS2微拉浓度等工艺条件对Ni-MoS2自润滑复合镀层硬度及摩擦学性能的影响,获得了制备复合镀层的最佳工艺参数为:MoS210g/L,分散剂0.1mg/gMoS2, 表面活性剂C10^-6L/L,pH值4.8,温度55℃,DK=1A/dm^2,空气搅拌,按此工艺获得的复合镀层具有显著的耐磨减摩功效.  相似文献   

2.
采用双脉冲复合电镀技术,在瓦特型镀液中,制备含纳米SiC的Ni/MoS2基复合镀层。研究纳米SiC浓度对复合镀层微观形貌、组织结构、显微硬度和摩擦性能的影响。结果表明:镀液中添加纳米SiC后,Ni/MoS2复合镀层的微观形貌产生明显的变化,随镀液中SiC浓度的增加,复合镀层表面致密度提高;镀液中纳米SiC浓度在1.0~1.5g/L时,组织由Ni+MoS2+SiC组成;纳米SiC为1.5g/L时,显微硬度达到最大,为505HV,摩擦因数为0.28,分别为纯Ni/MoS2的1.6倍和1/2。复合镀层的磨损机制以磨料磨损为主。  相似文献   

3.
初红涛  赵悦  苏立强  安茂忠 《材料保护》2012,45(7):41-43,75
为了改善锡镀层的性能,在磺酸盐体系镀锡液中加入纳米SiC颗粒电镀Sn-SiC纳米复合层,采用正交试验考察了甲磺酸浓度、镀液温度、甲基磺酸亚锡浓度和电流密度对复合镀层光亮度的影响,并分析了优化工艺的镀液和镀层性能。结果表明:正交试验研究的4因素中,电流密度对镀层光亮度的影响较大,其次是温度,影响最小的是甲磺酸浓度;优化工艺为:2.0 g/L纳米SiC,0.3 g/L阿拉伯胶,3.0 mL/L光亮剂,2.0 g/L对苯二酚,21.6 g/L甲基磺酸亚锡,60.5 g/L甲磺酸,电流密度2.0 A/dm2,镀液温度20℃,时间10 min;优化工艺的镀液分散能力、覆盖能力较好,电流效率较高,镀层平整、光亮、结晶细致、无麻点、起泡,纳米SiC微粒均匀分布于复合镀层中,镀层与基体结合强度较好,有良好的耐蚀性。  相似文献   

4.
为解决镍基金刚石复合电沉积过程中普遍存在镀层沉积速率慢、镀层内应力大的问题,本工作以新型高速Ni镀液为基础,考查了镀液中去应力添加剂含量、工艺参数,以及金刚石含量对镀层内应力影响的规律,并对复合镀层的微观形貌进行了表征。优选出了可以在30A/dm2的高阴极电流密度下快速电沉积低应力镍基金刚石复合镀层的镀液组成及工艺条件。结果表明:当镀液组成为十二烷基硫酸钠0.5g/L,乙酸铵3g/L,柠檬酸三钠1.5g/L,金刚石微粒浓度30g/L;施镀条件为pH值3~4,温度50℃时,制得的复合镀层内应力最低。  相似文献   

5.
采用电沉积方法制备Ni-W-ZrO2复合镀层, 研究了微粒的分散特性及镀液中微粒含量、 电流密度、 pH值、 温度等因素对Ni-W-ZrO2镀层沉积速率、 显微硬度、 镀层外观的综合影响, 优化得到Ni-W-ZrO2复合镀层的电沉积工艺为: Ni-W基础镀液中ZrO2添加量为10g/L, pH=7, 镀液温度为60~70℃, 电流密度为15A/dm2, 所获得的镀层硬度>HV800(×9.8MPa)。通过电化学技术研究了复合镀层在3.0wt%NaCl溶液中的耐腐蚀性能, 结果表明, Ni-W-ZrO2复合镀层有明显的钝化区间。   相似文献   

6.
Ni-α-Al2O3纳米复合电镀工艺的优选及镀层的硬度和耐蚀性   总被引:1,自引:0,他引:1  
为了提高Ni-Al2O3纳米复合电镀层的硬度和耐蚀性,以正交试验对镀液温度、电流密度、α-Al2O3纳米粒子质量浓度等因素进行了优选,采用扫描电镜、能谱仪、硬度仪及电化学工作站分别研究了镀层的微观形貌、能谱、硬度和耐蚀性。获得了最优工艺条件:镀液温度65℃,阴极电流密度2 A/dm2,Al2O3加入量为10g/L;在此工艺条件下所得Ni-α-Al2O3纳米复合镀层晶粒细小、表面平整、光滑,显微组织致密、均匀,镀层的硬度及耐蚀性比纯镍镀层均有显著提高。  相似文献   

7.
运用电沉积法制备Ni-P-W-WC复合镀层,着重研究了制备工艺和镀层性能.以镀层中碳化钨含量、镀速和镀层外观为指标,探讨了电流密度、电沉积时间、镀液中WC含量、镀液中钨酸钠含量、镀液pH等因素影响规律,确定了复合镀层的最佳工艺条件为:以Ni为阳极、电沉积时间为40 min、镀液中WC含量为14 g/L、镀液中钨酸钠含量为120 g/L、镀液pH为4.0、电流密度是4A/dm2.并用扫描电镜、X-衍射分析仪、阳极极化曲线等手段表征了复合镀层的形貌、结构、耐蚀性、抗氧化性等性能,结果表明,与Ni-P-W复合镀层相比,Ni-P-W-WC复合镀层有良好的综合性能.  相似文献   

8.
化学镀Co-B软磁合金工艺研究   总被引:3,自引:0,他引:3  
研究了稀土元素Ce介入化学镀钴硼软磁合金的工艺流程、镀液组成和工艺参数。在正交试验的基础上分析了镀液组成对沉积速度的影响 ,综合考察了镀层表面质量及镀层与基体的结合力。结果表明稀土元素Ce的加入能明显提高镀液的稳定性和沉积速度。确定了合适的稀土元素加入方式 ,得到了获得良好稀土钴硼合金镀层的最佳镀液组成和操作条件为 :Ce 1g/L ,Na2 C4 H4 O6 ·2H2 O  70g/L ,KBH4 1g/L ,Na2 B4 O7·10H2 O 4g/L ,CoCl2 ·6H2 O 11g/L ,温度 4 5℃ ,pH值 13.5。  相似文献   

9.
为了获得摩擦学性能优良的镀层,在20#钢基材上实施了纳米Al_2O_3-Ni-P化学复合镀,采用正交试验法优选了镀液配方,研究了镀液中纳米Al_2O_3含量、镀液温度对复合镀层显微硬度、摩擦和磨损性能的影响,用扫描电子显微镜对复合镀层表面形貌进行观察。结果表明,镀液中纳米Al_2O_3含量是影响复合镀层硬度和耐磨性能最主要因素。纳米Al_2O_3能有效改善Ni-P合金镀层结构,在镀层中分布较均匀,使复合镀层硬度和耐磨性能明显提高。当纳米Al_2O_3含量为6 g/L时,纳米粒子在复合镀层中分布致密、均匀,复合镀层硬度和耐磨性最佳,与基材20#钢结合性较好。镀液温度对复合镀层硬度和耐磨性能有一定影响,最佳镀液温度为85℃,此时复合镀层硬度和耐磨性较好。  相似文献   

10.
为了改善内燃机滑动轴承镀层的减摩性能,采用在合金基体上镀覆三元合金的工艺,在氟硼酸盐镀液体系中实现了Pb-Sn-Cu三元合金表面电镀.研究了镀液体系中镀液成分及工艺参数对Pb-Sn-Cu三元合金镀层成分及含量的影响.结果表明,镀液成分及电镀工艺参数对镀层成分及含量有较大的影响.镀液成分及电镀工艺参数的试验结果表明,镀液的最佳组成及工艺参数为:200 g/L Pb2+,25 g/L Sn2+,2.5 g/LCu2+,4g/L对苯二酚,2.5 g/L蛋白胨,100 g/L游离HBF4,30 g/L H3803,温度为25℃,电流密度6.0A/dm2.  相似文献   

11.
为了提高Ni-Al2O3纳米复合电镀层的硬度和耐蚀性,以正交试验对镀液温度、电流密度、a-Al2O3纳米粒子质量浓度等因素进行了优选,采用扫描电镜、能谱仪、硬度仪及电化学工作站分别研究了镀层的微观形貌、能谱、硬度和耐蚀性。获得了最优工艺条件:镀液温度65℃,阴极电流密度2A/dm2,Al2O3加入量为10g/L;在此工艺条件下所得Ni-a-Al2O3纳米复合镀层晶粒细小、表面平整、光滑,显微组织致密、均匀,镀层的硬度及耐蚀性比纯镍镀层均有显著提高。  相似文献   

12.
镍-磷-氧化铝复合化学镀层的耐磨性研究   总被引:7,自引:2,他引:7  
刘英 《材料保护》2004,37(6):12-13
将微粒三氧化二铝与镍-磷化学镀液复合,使三氧化二铝微粒均匀地弥散分布于镍-磷基体中,以提高镀层的耐磨性.着重研究了复合化学镀工艺条件和镀后热处理温度对Ni-P-Al2O3复合镀层耐磨性的影响.试验结果表明:施镀工艺对镀速、三氧化二铝在镀层中的分布有影响,镀后热处理可提高镀层硬度.在pH=5.4、施镀温度为90±2℃、α-Al2O3微粒加入量为5g/L、搅拌速度为400r/min的条件下所得复合镀层加热到400℃、保温1 h后,镀层耐磨性最佳.在相同的磨损条件下,复合镀层的耐磨性比Ni-P镀层提高6~7倍,比45钢淬火态提高30多倍.  相似文献   

13.
酸性硫酸盐直流电沉积纳米晶锌镀层比脉冲电沉积投入小、时间短、操作简单.为此,采用直流电沉积工艺在酸性硫酸锌镀液体系中制备了纳米晶锌镀层,并对沉积工艺参数进行了优选.运用XRD,SEM,AFM等研究了添加剂、pH值、温度等对纳米晶锌镀层的影响.结果表明,在基础镀液中加入0.2 g/L十六烷基三甲基溴化铵(CTAB)、0.2 g/L苄叉丙酮(BA)和0.2 g/L聚乙二醇(PEG)混合剂,在镀液pH=2,温度25℃,电流密度为1.0A/cm2时,可获得光亮致密的纳米晶锌镀层,其平均晶粒尺寸最小约为38.6 nm.  相似文献   

14.
采用化学复合镀技术在45钢表面制备了Ni-P/SiC复合镀层,通过金相显微镜、扫描电镜以及EDS能谱分析考察了镀层的微观组织以及镀层中获得的SiC的沉积量随镀液中SiC浓度的变化,利用划痕仪分析了镀层与基体的结合力.结果表明:镀层与基体界面处无夹杂孔洞存在、结合致密,SiC颗粒在复合镀层中分布均匀,复合镀层中SiC的沉积量随镀液中SiC浓度的增加而增加,镀液中SiC的浓度为6 g/L时镀层中SiC的沉积量达到最大值10.6%,Ni-P/SiC复合镀层与基体的结合力和镀液中SiC的浓度呈抛物线关系,镀液中的SiC浓度为6 g/L时,其结合力最小,为63 N.  相似文献   

15.
采用化学镀方法,在A3钢表面制备Ni-Fe-P三元合金,通过SEM,EDS,XRD,OM等表征手段对合金镀层成分、结构和形貌进行分析,并使用增重法、氯化钯加速法分别对镀层的沉积速率、镀液的稳定性进行分析。探讨了主盐、还原剂、络合剂、稳定剂、pH值、温度等工艺参数对沉积速率、镀层形貌、成分、镀液稳定性的影响,获得了镀速快、镀层均匀、镀液稳定性好的工艺配方。在采用复合络合剂的体系中,当主络合剂柠檬酸钠的浓度为60g/L,辅助络合剂氨基乙酸的浓度为5g/L时,化学镀沉积速率可以达到20.2mg.cm-2.h-1,并且镀液保持了较好的稳定性。  相似文献   

16.
玻璃纤维化学镀Co-P合金工艺研究   总被引:4,自引:1,他引:3  
为了提高导电玻璃纤维的电、磁性能,拓宽其应用领域,采用化学镀的方法,研究了在玻璃纤维表面镀Co-P合金的工艺,探讨了化学镀液的主盐、温度、pH值及施镀时间等工艺参数对化学镀Co-P合金成分及镀速的影响.本工艺的最佳配方为:18 g/L CoSO4,18 g/L NaH2PO2*H2O,45 g/L柠檬酸钠,29 g/L (NH4)2SO4;最佳参数:温度为90 ℃,pH值为9,施镀时间为50 min.在此工艺条件下镀液的稳定性较好,镀层沉积速度快、光亮、致密,所得镀层为非晶结构.  相似文献   

17.
李燕  舒霞  黄新民  郑玉春  吴玉程 《材料保护》2012,45(8):33-36,71,72
在镀液中添加铁氧体粒子制备Ni-Fe基磁性复合镀层是电沉积技术一个新的发展方向,目前相关研究不多。采用电沉积法在铜片上制备了Ni-Fe-NiFe2O4复合镀层,用电化学方法、金相显微镜及能谱仪研究了镀液中NiFe2O4含量、电流密度、表面活性剂十六烷基三甲基溴化铵(CTAB)等对复合镀层性能的影响。结果表明:复合镀层硬度随镀液中NiFe2O4含量的增加先增大后减小,含量为15 g/L时镀层硬度达370 HV,耐蚀性最好;随电流密度增大,沉积速率加快,镀层显微硬度增加,耐蚀性略有提高;加入CTAB能提高镀层中微粒的复合量,可在较低的电流密度下获得孔隙小、致密度高的镀层,显微硬度也有所提高,但耐蚀性略有下降;在温度为60℃,镀液中NiFe2O4含量为15 g/L,电流密度为5 A/dm2,CTAB含量为0.1%(质量分数)时,可获得性能较好的复合镀层,镀层中NiFe2O4含量较高,均匀致密,微观表面粗糙,无裂纹,与基体结合良好。  相似文献   

18.
铜基碳纳米管复合薄膜电沉积制备工艺   总被引:1,自引:1,他引:0  
为获得碳纳米管分布均匀且导电性良好的铜基碳纳米管复合材料,用超声辅助搅拌复合电沉积方法制备了Cu/MWCNT复合薄膜.采用扫描电子显微镜(SEM)、四探针电阻率仪等研究了电沉积过程中复合电镀液中碳纳米管浓度、电镀液p H值、脉冲电流密度等各项电沉积工艺参数以及不同退火温度对复合薄膜的组织形貌和电阻率的影响规律.结果表明:改变镀液中碳纳米管含量和电镀液的p H值可以改变镀层中碳纳米管的含量及分布,MWCNTs质量浓度升高到2 g/L时,复合薄膜中MWCNTs的质量分数达2.17%;改变电流密度可以细化镀层组织并改善碳纳米管在镀层中的分布,从而提高镀膜的致密度并降低镀层的电阻率;合适的热处理温度可以改善薄膜结晶度和致密度,并提高导电性.镀液中MWCNTs质量浓度为2 g/L,电镀液p H为2,电流密度为20 A/dm2,电镀时温度在25℃且加入超声辅助搅拌时,所得到的复合镀膜经400℃退火后电阻率最低.  相似文献   

19.
Ni-P-TiO2(纳米)化学复合镀工艺和性能研究   总被引:6,自引:2,他引:4  
通过正交试验,确定了Ni-P-TiO2(纳米)化学复合镀的最佳工艺配方为;硫酸镍24g/L,次亚磷酸钓25g/L,乳酸25mL/L,苹果酸3—5g/L,琥珀酸5—8g/L,乙酸钠10g/L,表面活性剂14mg/L,硫脲2mg/L,纳米TiO2 2g/L,温度85℃,pH值4.8。同时讨论了影响镀速的各因素,并对镀态下镀层形貌及热处理后镀层各方面性能、内部组织结构进行了研究。结果表明;该复合镀层硬度高,耐磨性及耐蚀性优异。  相似文献   

20.
采用化学镀镍的方法对压电复合材料进行金属化。通过正交试验并结合实际生产, 研究确定了压电复合材料表面化学镀镍前处理中新型粗化液、活化液以及化学镀液的最佳工艺配方和条件: 粗化溶液浓度350 g/L, 粗化温度25 ℃, 粗化时间25 min; PdCl2浓度0.4 g/L, 活化温度30 ℃, 活化时间5 min; 施镀温度 38~43 ℃, 施镀时间8~10 min, 镀液pH 8.5~9.5。利用SEM、EDS和XRD研究镀层的形貌、成分及镀层结构, 采用热震实验和极化曲线测试镀层的结合力及耐蚀性。结果表明: 最佳实验条件下获得的镀层均一性良好, 具有较好的耐腐蚀性能及较强的结合力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号