首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves severe nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC to accommodate nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC). It also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design, which relieves practising engineers from the need for deriving a physical-principles based model first. An on-line realisation technique for implementing NMPC is then developed and applied to a Mitsubishi Chemicals polymerisation reaction process. Results show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order Volterra model based methods. The advantages of the developed approach lie not only in control performance superior to existing NMPC methods, but also in eliminating the need for converting an analytical model and then convert it to a Volterra model obtainable only up to the second order.  相似文献   

2.
《Journal of Process Control》2014,24(8):1247-1259
In the last years, the use of an economic cost function for model predictive control (MPC) has been widely discussed in the literature. The main motivation for this choice is that often the real goal of control is to maximize the profit or the efficiency of a certain system, rather than tracking a predefined set-point as done in the typical MPC approaches, which can be even counter-productive. Since the economic optimal operation of a system resulting from the application of an economic model predictive control approach drives the system to the constraints, the explicit consideration of the uncertainties becomes crucial in order to avoid constraint violations. Although robust MPC has been studied during the past years, little attention has yet been devoted to this topic in the context of economic nonlinear model predictive control, especially when analyzing the performance of the different MPC approaches. In this work, we present the use of multi-stage scenario-based nonlinear model predictive control as a promising strategy to deal with uncertainties in the context of economic NMPC. We make a comparison based on simulations of the advantages of the proposed approach with an open-loop NMPC controller in which no feedback is introduced in the prediction and with an NMPC controller which optimizes over affine control policies. The approach is efficiently implemented using CasADi, which makes it possible to achieve real-time computations for an industrial batch polymerization reactor model provided by BASF SE. Finally, a novel algorithm inspired by tube-based MPC is proposed in order to achieve a trade-off between the variability of the controlled system and the economic performance under uncertainty. Simulations results show that a closed-loop approach for robust NMPC increases the performance and that enforcing low variability under uncertainty of the controlled system might result in a big performance loss.  相似文献   

3.
ABSTRACT

Linear model predictive control (MPC) can be currently deployed at outstanding speeds, thanks to recent progress in algorithms for solving online the underlying structured quadratic programs. In contrast, nonlinear MPC (NMPC) requires the deployment of more elaborate algorithms, which require longer computation times than linear MPC. Nonetheless, computational speeds for NMPC comparable to those of MPC are now regularly reported, provided that the adequate algorithms are used. In this paper, we aim at clarifying the similarities and differences between linear MPC and NMPC. In particular, we focus our analysis on NMPC based on the real-time iteration (RTI) scheme, as this technique has been successfully tested and, in some applications, requires computational times that are only marginally larger than linear MPC. The goal of the paper is to promote the understanding of RTI-based NMPC within the linear MPC community.  相似文献   

4.
Model predictive control (MPC) has been effectively applied in process industries since the 1990s. Models in the form of closed equation sets are normally needed for MPC, but it is often difficult to obtain such formulations for large nonlinear systems. To extend nonlinear MPC (NMPC) application to nonlinear distributed parameter systems (DPS) with unknown dynamics, a data-driven model reduction-based approach is followed. The proper orthogonal decomposition (POD) method is first applied off-line to compute a set of basis functions. Then a series of artificial neural networks (ANNs) are trained to effectively compute POD time coefficients. NMPC, using sequential quadratic programming is then applied. The novelty of our methodology lies in the application of POD's highly efficient linear decomposition for the consequent conversion of any distributed multi-dimensional space-state model to a reduced 1-dimensional model, dependent only on time, which can be handled effectively as a black-box through ANNs. Hence we construct a paradigm, which allows the application of NMPC to complex nonlinear high-dimensional systems, even input/output systems, handled by black-box solvers, with significant computational efficiency. This paradigm combines elements of gain scheduling, NMPC, model reduction and ANN for effective control of nonlinear DPS. The stabilization/destabilization of a tubular reactor with recycle is used as an illustrative example to demonstrate the efficiency of our methodology. Case studies with inequality constraints are also presented.  相似文献   

5.
Model predictive control (MPC) is a well-established controller design strategy for linear process models. Because many chemical and biological processes exhibit significant nonlinear behaviour, several MPC techniques based on nonlinear process models have recently been proposed. The most significant difference between these techniques is the computational approach used to solve the nonlinear model predictive control (NMPC) optimization problem. Consequently, analysis of NMPC techniques is often connected to the computational approach employed. In this paper, a theoretical analysis of unconstrained NMPC is presented that is independent of the computational approach. A nonlinear discrete-time, state-space model is used to predict the effects of future inputs on future process outputs. It is shown that model inverse, pole-placement, and steady-state controllers can be obtained by suitable selection of the control and prediction horizons. Moreover, the NMPC optimization problem can be modified to yield nonlinear internal model control (NIMC). The computational requirements of NIMC are considerably less than NMPC, but the NIMC approach is currently restricted to nonlinear models with well-defined and stable inverses. The NIMC controller is shown to provide superior servo and regulatory performance to a linear IMC controller for a continuous stirred tank reactor.  相似文献   

6.
Linear model predictive control (MPC) is a widely‐used control strategy in chemical processes. Its extension to nonlinear MPC (NMPC) has drawn increasing attention since many process systems are inherently nonlinear. When implementing the NMPC based on a nonlinear predictive model, a nonlinear dynamic optimization problem must be calculated. For the sake of solving this optimization problem efficiently, a latent‐variable dynamic optimization approach is proposed. Two kinds of constraint formulations, original variable constraint and Hotelling T2 statistic constraint, are also discussed. The proposed method is illustrated in a pH neutralization process. The results demonstrate that the latent‐variable dynamic optimization based the NMPC strategy is efficient and has good control performance.  相似文献   

7.
In this paper a nonlinear model predictive control (NMPC) based on a Wiener model with a piecewise linear gain is presented. This approach retains all the interested properties of the classical linear model predictive control (MPC) and keeps computations easy to solve due to the canonical structure of the nonlinear gain. Some guidelines for the identification of the nominal model as well as the uncertainty bounds are discussed, and two examples that show the possibility of application of this control scheme to real life problems are presented.  相似文献   

8.
A plant-wide control strategy based on integrating linear model predictive control (LMPC) and nonlinear model predictive control (NMPC) is proposed. The hybrid method is applicable to plants that can be decomposed into approximately linear subsystems and highly nonlinear subsystems that interact via mass and energy flows. LMPC is applied to the linear subsystems and NMPC is applied to the nonlinear subsystems. A simple controller coordination strategy that counteracts interaction effects is proposed for the case of one linear subsystem and one nonlinear subsystem. A reactor/separator process with recycle is used to compare the hybrid method to conventional LMPC and NMPC techniques.  相似文献   

9.
Nonlinear model predictive control (NMPC) algorithms are based on various nonlinear models. A number of on-line optimization approaches for output-feedback NMPC based on various black-box models can be found in the literature. However, NMPC involving on-line optimization is computationally very demanding. On the other hand, an explicit solution to the NMPC problem would allow efficient on-line computations as well as verifiability of the implementation. This paper applies an approximate multi-parametric nonlinear programming approach to explicitly solve output-feedback NMPC problems for constrained nonlinear systems described by black-box models. In particular, neural network models are used and the optimal regulation problem is considered. A dual-mode control strategy is employed in order to achieve an offset-free closed-loop response in the presence of bounded disturbances and/or model errors. The approach is applied to design an explicit NMPC for regulation of a pH maintaining system. The verification of the NMPC controller performance is based on simulation experiments.  相似文献   

10.
张国银  杨智  谭洪舟 《自动化学报》2008,34(9):1148-1157
针对关系度不确定非线性系统, 基于模型预测控制理论和切换解析非线性模型预测控制(Nonlinear model predictive control, NMPC) 提出了一种非切换的解析NMPC新方法. 论证了在非切换解析NMPC控制律下, 通过坐标变换可以将闭环系统分别在关系度确定和不确定的两个子空间近似为线性系统, 得出非切换解析NMPC使闭环系统稳定的必要条件. 通过仿真实验验证了非切换解析NMPC可以达到很好的响应特性, 无需切换的特征也扩大了其应用范围.  相似文献   

11.
Model predictive control (MPC) schemes are now widely used in process industries for the control of key unit operations. Linear model predictive control (LMPC) schemes which make use of linear dynamic model for prediction, limit their applicability to a narrow range of operation (or) to systems which exhibit mildly nonlinear dynamics.

In this paper, a nonlinear observer based model predictive controller (NMPC) for nonlinear system has been proposed. An approach to design NMPC based on fuzzy Kalman filter (FKF) and augmented state fuzzy Kalman filter (ASFKF) has been presented. The efficacy of the proposed NMPC schemes have been demonstrated by conducting simulation studies on the continuous stirred tank reactor (CSTR). The analysis of the extensive dynamic simulation studies revealed that, the NMPC schemes formulated produces satisfactory performance for both servo and regulatory problems. Simulation results also include an inferential control case, where the reactor concentration is not measured but estimated from temperature measurement and used in the NMPC based on FKF and ASFKF formulations.  相似文献   


12.
张铭钧  高萍  徐建安 《机器人》2008,30(1):1-96
针对自治式水下机器人高度非线性和时变性的特点,提出了一种基于神经网络的水下机器人广义预测控制策略.利用改进型Elman网络作为多步预测模型,在对网络学习算法进行改进的基础上,实现了Elman网络的在线学习,并提出了用于求解神经广义预测控制律的灵敏度公式.进行了具有神经网络在线学习功能和不具有在线学习功能的水下机器人的速度控制实验,并就预测控制效果进行了对比分析.实验结果表明,具有自适应学习功能的水下机器人速度控制法的精度要优于不具有在线学习功能的速度控制法,且当水下机器人动态特性发生变化时具有较强的自适应能力.  相似文献   

13.
In model predictive control (MPC), the input sequence is computed, minimizing a usually quadratic cost function based on the predicted evolution of the system output. In the case of nonlinear MPC (NMPC), the use of nonlinear prediction models frequently leads to non‐convex optimization problems with several minimums. This paper proposes a new NMPC strategy based on second order Volterra series models where the original performance index is approximated by quadratic functions, which represent a lower bound of the original performance index. Convexity of the approximating quadratic cost functions can be achieved easily by a suitable choice of the weighting of the control increments in the performance index. The approximating cost functions can be globally minimized by convex optimization techniques in order to compute the input sequence. The minimization of the performance index is carried out by an iterative optimization procedure, which guarantees convergence to the solution. Furthermore, for a nominal prediction model, asymptotic stability for the proposed NMPC strategy can be shown. In the case of considering an estimation error in the prediction model, input‐to‐state practical stability is assured. The control performance of the NMPC strategy is illustrated by experimental results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
基于T-S模糊模型的非线性预测控制策略   总被引:15,自引:1,他引:15  
提出了一种新的基于T-S模糊模型的非线性预测控制策略. T-S模糊模型用于描述对象的非线性动态特性, 通过将模糊模型的输出反馈回来作为模型输入, 从而构成了模糊多步预报器. 由于T-S模糊模型每条规则的结论部分是一个线性模型, 因此整个模糊模型可以看作一个线性时变系统, 从而将模糊预测控制器中的非线性优化问题转化为一个线性二次寻优问题, 以方便求解. pH中和过程的仿真结果表明其性能优于传统的动态矩阵控制器.  相似文献   

15.
The implementation of model predictive control (MPC) requires to solve an optimization problem online. The computation time, often not negligible especially for nonlinear MPC (NMPC), introduces a delay in the feedback loop. Moreover, it impedes fast sampling rate setting for the controller to react to uncertainties quickly. In this paper, a dual time scale control scheme is proposed for linear/nonlinear systems with external disturbances. A pre-compensator works at fast sampling rate to suppress uncertainty, while the outer MPC controller updates the open loop input sequence at a slower rate. The computation delay is explicitly considered and compensated in the MPC design. Four robust MPC algorithms for linear/nonlinear systems in the literature are adopted and tailored for the proposed control scheme. The recursive feasibility and stability are rigorously analysed. Three simulation examples are provided to validate the proposed approaches.  相似文献   

16.
This article presents a nonlinear model predictive control (NMPC) approach based on quasi‐linear parameter varying (quasi‐LPV) representations of the model and constraints. Stability of the proposed algorithm is ensured by the offline solution of an optimization problem with linear matrix inequality constraints in conjunction with an online terminal state constraint. Furthermore, an iterative approach is presented with which the NMPC optimization problem can be handled by solving a series of Quadratic Programs at each time step, this being highly computationally efficient. A practical and simple way of obtaining quasi‐LPV representations of the system using velocity‐based linearization is presented in two examples.  相似文献   

17.
基于多模糊模型的非线性预测控制   总被引:1,自引:0,他引:1  
研究了基于多模糊模型的非线性预测控制问题 ,提出了基于多模型融合的非线性预测控制方法 .首先根据实际对象在不同运行点附近的状态建立了非线性系统的线性多模糊模型表示 ,然后给出了基于多模糊模型的预测控制原理结构框图 .非线性多模糊模型被用来作为预测模型 ,CSTR过程的仿真研究表明是一种有前景的非线性预测控制方法 .  相似文献   

18.
In this paper, a novel robust adaptive trajectory tracking control scheme with prescribed performance is developed for underactuated autonomous underwater vehicles (AUVs) subject to unknown dynamic parameters and disturbances. A simple error mapping function is proposed in order to guarantee that the trajectory tracking error satisfies the prescribed performance. A novel additional control based on Nussbaum function is proposed to handle the underactuation of AUVs. The compounded uncertain item caused by the unknown dynamic parameters and disturbances is transformed into a linear parametric form with only single unknown parameter called virtual parameter. On the basis of the above, a novel robust adaptive trajectory tracking control law is developed using dynamic surface control technique, where the adaptive law online provides the estimation of the virtual parameter. Strict stability analysis indicates that the designed control law ensures uniform ultimate boundedness of the AUV trajectory tracking closed‐loop control system with prescribed tracking performance. Simulation results on an AUV in two different disturbance cases with dynamic parameter perturbation verify the effectiveness of our adaptive trajectory tracking control scheme.  相似文献   

19.
A multivariable multi-rate nonlinear model predictive control (NMPC) strategy is applied to styrene polymerization. The NMPC algorithm incorporates a multi-rate Extended Kalman Filter (EKF) to handle state variable and parameter estimation. A fundamental model is developed for the styrene polymerization CSTR, and control of polymer properties such as number average molecular weight (NAMW) and polydispersity is considered. These properties characterize the final polymer distribution and are strong indicators of the polymer qualities of interest. Production rate control is also demonstrated. Temperature measurements are available frequently while laboratory measurements of concentration and molecular weight distribution are available infrequently with substantial time delays between sampling and analysis. Observability analysis of the augmented system provides guidelines for the design of the augmented disturbance model for use in estimation using the multi-rate EKF. The observability analysis links measurement sets and corresponding observable disturbance models, and shows that measurements of moments of the polymer distribution are essential for good estimation and control. The CSTR is operated at an open-loop unstable steady state. Control simulations are performed under conditions of plant-model structural mismatch and in the presence of parameter uncertainty and disturbances, and the proposed multi-rate NMPC algorithm is shown to provide superior performance compared to linear multi-rate and nonlinear single-rate MPC algorithms. The major contributions of this work are the development of the multi-rate estimator and the measurement design study based on the observability analysis.  相似文献   

20.
Model predictive control (MPC) has become one of the most popular control techniques in the process industry mainly because of its ability to deal with multiple-input–multiple-output plants and with constraints. However, in the presence of model uncertainties and disturbances its performance can deteriorate. Therefore, the development of robust MPC techniques has been widely discussed during the last years, but they were rarely, if at all, applied in practice due to the conservativeness or the computational complexity of the approaches. In this paper, we present multi-stage NMPC as a promising robust non-conservative nonlinear model predictive control scheme. The approach is based on the representation of the evolution of the uncertainty by a scenario tree, and leads to a non-conservative robust control of the uncertain plant because the adaptation of future inputs to new information is taken into account. Simulation results show that multi-stage NMPC outperforms standard and min–max NMPC under the presence of uncertainties for a semi-batch polymerization benchmark problem. In addition, the advantages of the approach are illustrated for the case where only noisy measurements are available and the unmeasured states and the uncertainties have to be estimated using an observer. It is shown that better performance can be achieved than by estimating the unknown parameters online and adapting the plant model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号