首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Model predictive control (MPC) is a well-established controller design strategy for linear process models. Because many chemical and biological processes exhibit significant nonlinear behaviour, several MPC techniques based on nonlinear process models have recently been proposed. The most significant difference between these techniques is the computational approach used to solve the nonlinear model predictive control (NMPC) optimization problem. Consequently, analysis of NMPC techniques is often connected to the computational approach employed. In this paper, a theoretical analysis of unconstrained NMPC is presented that is independent of the computational approach. A nonlinear discrete-time, state-space model is used to predict the effects of future inputs on future process outputs. It is shown that model inverse, pole-placement, and steady-state controllers can be obtained by suitable selection of the control and prediction horizons. Moreover, the NMPC optimization problem can be modified to yield nonlinear internal model control (NIMC). The computational requirements of NIMC are considerably less than NMPC, but the NIMC approach is currently restricted to nonlinear models with well-defined and stable inverses. The NIMC controller is shown to provide superior servo and regulatory performance to a linear IMC controller for a continuous stirred tank reactor.  相似文献   

2.
In model predictive control (MPC), the input sequence is computed, minimizing a usually quadratic cost function based on the predicted evolution of the system output. In the case of nonlinear MPC (NMPC), the use of nonlinear prediction models frequently leads to non‐convex optimization problems with several minimums. This paper proposes a new NMPC strategy based on second order Volterra series models where the original performance index is approximated by quadratic functions, which represent a lower bound of the original performance index. Convexity of the approximating quadratic cost functions can be achieved easily by a suitable choice of the weighting of the control increments in the performance index. The approximating cost functions can be globally minimized by convex optimization techniques in order to compute the input sequence. The minimization of the performance index is carried out by an iterative optimization procedure, which guarantees convergence to the solution. Furthermore, for a nominal prediction model, asymptotic stability for the proposed NMPC strategy can be shown. In the case of considering an estimation error in the prediction model, input‐to‐state practical stability is assured. The control performance of the NMPC strategy is illustrated by experimental results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Model predictive control (MPC) schemes are now widely used in process industries for the control of key unit operations. Linear model predictive control (LMPC) schemes which make use of linear dynamic model for prediction, limit their applicability to a narrow range of operation (or) to systems which exhibit mildly nonlinear dynamics.

In this paper, a nonlinear observer based model predictive controller (NMPC) for nonlinear system has been proposed. An approach to design NMPC based on fuzzy Kalman filter (FKF) and augmented state fuzzy Kalman filter (ASFKF) has been presented. The efficacy of the proposed NMPC schemes have been demonstrated by conducting simulation studies on the continuous stirred tank reactor (CSTR). The analysis of the extensive dynamic simulation studies revealed that, the NMPC schemes formulated produces satisfactory performance for both servo and regulatory problems. Simulation results also include an inferential control case, where the reactor concentration is not measured but estimated from temperature measurement and used in the NMPC based on FKF and ASFKF formulations.  相似文献   


4.
《Journal of Process Control》2014,24(8):1247-1259
In the last years, the use of an economic cost function for model predictive control (MPC) has been widely discussed in the literature. The main motivation for this choice is that often the real goal of control is to maximize the profit or the efficiency of a certain system, rather than tracking a predefined set-point as done in the typical MPC approaches, which can be even counter-productive. Since the economic optimal operation of a system resulting from the application of an economic model predictive control approach drives the system to the constraints, the explicit consideration of the uncertainties becomes crucial in order to avoid constraint violations. Although robust MPC has been studied during the past years, little attention has yet been devoted to this topic in the context of economic nonlinear model predictive control, especially when analyzing the performance of the different MPC approaches. In this work, we present the use of multi-stage scenario-based nonlinear model predictive control as a promising strategy to deal with uncertainties in the context of economic NMPC. We make a comparison based on simulations of the advantages of the proposed approach with an open-loop NMPC controller in which no feedback is introduced in the prediction and with an NMPC controller which optimizes over affine control policies. The approach is efficiently implemented using CasADi, which makes it possible to achieve real-time computations for an industrial batch polymerization reactor model provided by BASF SE. Finally, a novel algorithm inspired by tube-based MPC is proposed in order to achieve a trade-off between the variability of the controlled system and the economic performance under uncertainty. Simulations results show that a closed-loop approach for robust NMPC increases the performance and that enforcing low variability under uncertainty of the controlled system might result in a big performance loss.  相似文献   

5.
This article presents a nonlinear model predictive control (NMPC) approach based on quasi‐linear parameter varying (quasi‐LPV) representations of the model and constraints. Stability of the proposed algorithm is ensured by the offline solution of an optimization problem with linear matrix inequality constraints in conjunction with an online terminal state constraint. Furthermore, an iterative approach is presented with which the NMPC optimization problem can be handled by solving a series of Quadratic Programs at each time step, this being highly computationally efficient. A practical and simple way of obtaining quasi‐LPV representations of the system using velocity‐based linearization is presented in two examples.  相似文献   

6.
Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves severe nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC to accommodate nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC). It also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design, which relieves practising engineers from the need for deriving a physical-principles based model first. An on-line realisation technique for implementing NMPC is then developed and applied to a Mitsubishi Chemicals polymerisation reaction process. Results show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order Volterra model based methods. The advantages of the developed approach lie not only in control performance superior to existing NMPC methods, but also in eliminating the need for converting an analytical model and then convert it to a Volterra model obtainable only up to the second order.  相似文献   

7.
This paper proposes a new adaptive nonlinear model predictive control (NMPC) methodology for a class of hybrid systems with mixed inputs. For this purpose, an online fuzzy identification approach is presented to recursively estimate an evolving Takagi–Sugeno (eTS) model for the hybrid systems based on a potential clustering scheme. A receding horizon adaptive NMPC is then devised on the basis of the online identified eTS fuzzy model. The nonlinear MPC optimization problem is solved by a genetic algorithm (GA). Diverse sets of test scenarios have been conducted to comparatively demonstrate the robust performance of the proposed adaptive NMPC methodology on the challenging start-up operation of a hybrid continuous stirred tank reactor (CSTR) benchmark problem.  相似文献   

8.
《Journal of Process Control》2014,24(7):1106-1120
Gradient-based optimization may not be suited if the objective and constraint functions in a nonlinear model predictive control (NMPC) optimization problem are not differentiable. Some well-known derivative-free optimization (DFO)-algorithms are investigated, and a novel warm-start modification to the Wedge DFO-algorithm is proposed. Together with a gradient-based SQP-algorithm these are applied to the NMPC problem and compared in a single-shooting NMPC formulation to a subsea oil–gas separation process. The findings are that DFO is significantly more robust against the numerical issues, compared to a gradient-based SQP tested. Moreover, the warm-start modification reduces the computational complexity.  相似文献   

9.
Widespread application of dynamic optimization with fast optimization solvers leads to increased consideration of first-principles models for nonlinear model predictive control (NMPC). However, significant barriers to this optimization-based control strategy are feedback delays and consequent loss of performance and stability due to on-line computation. To overcome these barriers, recently proposed NMPC controllers based on nonlinear programming (NLP) sensitivity have reduced on-line computational costs and can lead to significantly improved performance. In this study, we extend this concept through a simple reformulation of the NMPC problem and propose the advanced-step NMPC controller. The main result of this extension is that the proposed controller enjoys the same nominal stability properties of the conventional NMPC controller without computational delay. In addition, we establish further robustness properties in a straightforward manner through input-to-state stability concepts. A case study example is presented to demonstrate the concepts.  相似文献   

10.
This paper describes the application of nonlinear model predictive control (NMPC) to the temperature control of a semi-batch chemical reactor equipped with a multi-fluid heating/cooling system. The strategy of the nonlinear control system is based on a constrained optimisation problem, which is solved repeatedly on-line by a step-wise integration of a nonlinear dynamic model and optimisation strategy. A supervisory control routine has been developed, based on the same nonlinear dynamic model, to handle automatically the fluid changeovers. Both NMPC and supervisory control have been implemented on a PC and applied to a 16 l batch reactor pilot plant. Experiments illustrate the feasibility of such a procedure involving predictive control and supervisory control.  相似文献   

11.
The implementation of model predictive control (MPC) requires to solve an optimization problem online. The computation time, often not negligible especially for nonlinear MPC (NMPC), introduces a delay in the feedback loop. Moreover, it impedes fast sampling rate setting for the controller to react to uncertainties quickly. In this paper, a dual time scale control scheme is proposed for linear/nonlinear systems with external disturbances. A pre-compensator works at fast sampling rate to suppress uncertainty, while the outer MPC controller updates the open loop input sequence at a slower rate. The computation delay is explicitly considered and compensated in the MPC design. Four robust MPC algorithms for linear/nonlinear systems in the literature are adopted and tailored for the proposed control scheme. The recursive feasibility and stability are rigorously analysed. Three simulation examples are provided to validate the proposed approaches.  相似文献   

12.
A RBF-ARX modeling and robust model predictive control (MPC) approach to achieving output-tracking control of the nonlinear system with unknown steady-state knowledge is proposed. On the basis of the RBF-ARX model with considering the system time delay, a local linearization state-space model is obtained to represent the current behavior of the nonlinear system, and a polytopic uncertain linear parameter varying (LPV) state-space model is built to represent the future system’s nonlinear behavior. Based on the two models, a quasi-min–max MPC algorithm with constraint is designed for output-tracking control of the nonlinear system with unknown steady state knowledge. The optimization problem of the quasi-min–max MPC algorithm is finally converted to the convex linear matrix inequalities (LMIs) optimization problem. Closed-loop stability of the MPC strategy is guaranteed by the use of parameter-dependent Lyapunov function and feasibility of the LMIs. Two examples, i.e. the modeling and control of a continuously stirred tank reactor (CSTR) and a two tank system demonstrate the effectiveness of the RBF-ARX modeling and robust MPC approach.  相似文献   

13.
This paper describes a terrain avoidance control methodology for autonomous rotorcraft applied to low altitude flight. A simple nonlinear model predictive control (NMPC) formulation is used to adequately address the terrain avoidance problem, which involves stabilizing a nonlinear and highly coupled dynamic model of a helicopter, while avoiding collisions with the terrain as well as preventing input and state saturations. The physical input saturations are made intrinsic to the model, such that the control is always admissible and the MPC design is simplified. A comparison of several optimization approaches is provided, where the performance of the traditional gradient method with fixed step is compared with the quasi-Newton method and a line search algorithm. The simulation results show that the adopted strategy achieves good performance even when the desired path is on collision course with the terrain.  相似文献   

14.
A plant-wide control strategy based on integrating linear model predictive control (LMPC) and nonlinear model predictive control (NMPC) is proposed. The hybrid method is applicable to plants that can be decomposed into approximately linear subsystems and highly nonlinear subsystems that interact via mass and energy flows. LMPC is applied to the linear subsystems and NMPC is applied to the nonlinear subsystems. A simple controller coordination strategy that counteracts interaction effects is proposed for the case of one linear subsystem and one nonlinear subsystem. A reactor/separator process with recycle is used to compare the hybrid method to conventional LMPC and NMPC techniques.  相似文献   

15.
Nonlinear model predictive control (NMPC) algorithms are based on various nonlinear models. A number of on-line optimization approaches for output-feedback NMPC based on various black-box models can be found in the literature. However, NMPC involving on-line optimization is computationally very demanding. On the other hand, an explicit solution to the NMPC problem would allow efficient on-line computations as well as verifiability of the implementation. This paper applies an approximate multi-parametric nonlinear programming approach to explicitly solve output-feedback NMPC problems for constrained nonlinear systems described by black-box models. In particular, neural network models are used and the optimal regulation problem is considered. A dual-mode control strategy is employed in order to achieve an offset-free closed-loop response in the presence of bounded disturbances and/or model errors. The approach is applied to design an explicit NMPC for regulation of a pH maintaining system. The verification of the NMPC controller performance is based on simulation experiments.  相似文献   

16.
基于T-S模糊模型的非线性预测控制策略   总被引:15,自引:1,他引:15  
提出了一种新的基于T-S模糊模型的非线性预测控制策略. T-S模糊模型用于描述对象的非线性动态特性, 通过将模糊模型的输出反馈回来作为模型输入, 从而构成了模糊多步预报器. 由于T-S模糊模型每条规则的结论部分是一个线性模型, 因此整个模糊模型可以看作一个线性时变系统, 从而将模糊预测控制器中的非线性优化问题转化为一个线性二次寻优问题, 以方便求解. pH中和过程的仿真结果表明其性能优于传统的动态矩阵控制器.  相似文献   

17.
Advanced control strategy is necessary to ensure high efficiency and high load-following capability in the operation of modern power plant. Model predictive control (MPC) has been widely used for controlling power plant. Nevertheless, MPC needs to further improve its learning ability especially as power plants are nonlinear under load-cycling operation. Iterative learning control (ILC) and MPC are both popular approaches in industrial process control and optimization. The integration of model-based ILC with a real-time feedback MPC constitutes the model predictive iterative learning control (MPILC). Considering power plant, this paper presents a nonlinear model predictive controller based on iterative learning control (NMPILC). The nonlinear power plant dynamic is described by a fuzzy model which contains local liner models. The resulting NMPILC is constituted based on this fuzzy model. Optimal performance is realized within both the time index and the iterative index. Convergence property has been proven under the fuzzy model. Deep analysis and simulations on a drum-type boiler–turbine system show the effectiveness of the fuzzy-model-based NMPILC  相似文献   

18.
19.
基于改进DE-NMPC的酸碱中和反应pH值控制   总被引:1,自引:0,他引:1  
将一种改进的基于差分进化算法的非线性预测控制应用到酸碱中和反应pH值控制系统. 算法充分利用滴定曲线模型, 指导优化过程搜索的初始化空间. 同时, 在变异和选择等操作中改进了差分进化算法, 解决了一类有边界约束的非线性优化问题. 在发酵罐实验装置中进行了测试实验, 取得了较好的效果.  相似文献   

20.
ABSTRACT

Linear model predictive control (MPC) can be currently deployed at outstanding speeds, thanks to recent progress in algorithms for solving online the underlying structured quadratic programs. In contrast, nonlinear MPC (NMPC) requires the deployment of more elaborate algorithms, which require longer computation times than linear MPC. Nonetheless, computational speeds for NMPC comparable to those of MPC are now regularly reported, provided that the adequate algorithms are used. In this paper, we aim at clarifying the similarities and differences between linear MPC and NMPC. In particular, we focus our analysis on NMPC based on the real-time iteration (RTI) scheme, as this technique has been successfully tested and, in some applications, requires computational times that are only marginally larger than linear MPC. The goal of the paper is to promote the understanding of RTI-based NMPC within the linear MPC community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号