首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
Polytopic quasi–linear parameter‐varying (quasi‐LPV) models of nonlinear processes allow the usage linear matrix inequalities (LMIs) to guarantee some performance goal on them (in most cases, locally, over a so‐called modeling region). In order to get a finite number of LMIs, nonlinearities are embedded on the convex hull of a finite set of linear models. However, for a given system, the quasi‐LPV representations are not unique, yielding different performance bounds depending on the model choice. To avoid such drawback, earlier literature on the topic used annihilator‐based approaches, which require gridding on the modeling region, and nonconvex BMI conditions for controller synthesis; optimal performance bounds are obtained, but with a huge computational burden. This paper proposes building a model by minimizing the projection of the nonlinearities onto directions, which are deleterious for performance. For a small modeling region, these directions are obtained from LMIs with the linearized model. Additionally, these directions will guide the selection of the polytopic embedding's vertices. The procedure allows gridding‐free LMI controller synthesis, as in standard LPV setups, with a very reduced performance loss with respect to the aforementioned BMI+gridding approaches, at a fraction of the computational cost.  相似文献   

2.
Nonlinear model predictive control (NMPC) algorithms are based on various nonlinear models. A number of on-line optimization approaches for output-feedback NMPC based on various black-box models can be found in the literature. However, NMPC involving on-line optimization is computationally very demanding. On the other hand, an explicit solution to the NMPC problem would allow efficient on-line computations as well as verifiability of the implementation. This paper applies an approximate multi-parametric nonlinear programming approach to explicitly solve output-feedback NMPC problems for constrained nonlinear systems described by black-box models. In particular, neural network models are used and the optimal regulation problem is considered. A dual-mode control strategy is employed in order to achieve an offset-free closed-loop response in the presence of bounded disturbances and/or model errors. The approach is applied to design an explicit NMPC for regulation of a pH maintaining system. The verification of the NMPC controller performance is based on simulation experiments.  相似文献   

3.
This paper briefly reviews development of nonlinear model predictive control (NMPC) schemes for finite horizon prediction and basic computational algorithms that can solve the stable real‐time implementation of NMPC in space state form with state and input constraints. In order to ensure stability within a finite prediction horizon, most NMPC schemes use a terminal region constraint at the end of the prediction horizon — a particular NMPC scheme using a terminal region constraint, namely quasi‐infinite horizon, that guarantees asymptotic closed‐loop stability with input constraints is presented. However, when nonlinear processes have both input and state constraints, difficulty arises from failure to satisfy the state constraints due to constraints on input. Therefore, a new NMPC scheme without a terminal region constraint is developed using soften state constraints. A brief comparative simulation study of two NMPC schemes: quasi‐infinite horizon and soften state constraints is done via simple nonlinear examples to demonstrate the ability of the soften state constraints scheme. Finally, some features of future research from this study are discussed.  相似文献   

4.
基于信赖域二次规划的非线性模型预测控制优化算法   总被引:4,自引:0,他引:4  
针对非线性预测控制如何在有限时域内有效的求解非凸非线性规划这一关键问题, 本文采用序列二次规划方法, 将非线性规划转化为一系列二次子规划求解. 首先根据非线性规划联立方法将系统状态和控制量同时作为优化变量, 得到以控制量步长为优化变量, 只包含不等式约束的子二次规划问题, 并用它取代原SQP子规划, 减小了子问题的规模; 随后采用基于信赖域二次规划的方法求解子规划问题, 保证每次迭代的可行性; 同时采用一种能够保持SQP问题Hessian矩阵稀疏结构的更新方法, 也在一定程度上降低了算法的复杂程度.最后的仿真结果表明了该方法的有效性.  相似文献   

5.
Model predictive control (MPC) is a well-established controller design strategy for linear process models. Because many chemical and biological processes exhibit significant nonlinear behaviour, several MPC techniques based on nonlinear process models have recently been proposed. The most significant difference between these techniques is the computational approach used to solve the nonlinear model predictive control (NMPC) optimization problem. Consequently, analysis of NMPC techniques is often connected to the computational approach employed. In this paper, a theoretical analysis of unconstrained NMPC is presented that is independent of the computational approach. A nonlinear discrete-time, state-space model is used to predict the effects of future inputs on future process outputs. It is shown that model inverse, pole-placement, and steady-state controllers can be obtained by suitable selection of the control and prediction horizons. Moreover, the NMPC optimization problem can be modified to yield nonlinear internal model control (NIMC). The computational requirements of NIMC are considerably less than NMPC, but the NIMC approach is currently restricted to nonlinear models with well-defined and stable inverses. The NIMC controller is shown to provide superior servo and regulatory performance to a linear IMC controller for a continuous stirred tank reactor.  相似文献   

6.
The paper presents a method for enlarging the terminal region of quasi-infinity horizon nonlinear model predictive control (NMPC) for nonlinear systems with constraints. The main technique builds on the fact that terminal controllers are fictitious and never applied to the system in the quasi-infinite horizon NMPC [1]. Based on T-S fuzzy models of nonlinear systems, we show that a parameter-dependent state feedback law exists such that the corresponding value function and its level set can be served as terminal cost and terminal region. The problem of maximizing the terminal region is formulated as a convex optimization problem based on linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

7.
Linear model predictive control (MPC) is a widely‐used control strategy in chemical processes. Its extension to nonlinear MPC (NMPC) has drawn increasing attention since many process systems are inherently nonlinear. When implementing the NMPC based on a nonlinear predictive model, a nonlinear dynamic optimization problem must be calculated. For the sake of solving this optimization problem efficiently, a latent‐variable dynamic optimization approach is proposed. Two kinds of constraint formulations, original variable constraint and Hotelling T2 statistic constraint, are also discussed. The proposed method is illustrated in a pH neutralization process. The results demonstrate that the latent‐variable dynamic optimization based the NMPC strategy is efficient and has good control performance.  相似文献   

8.
A method is presented for synthesizing output estimators and disturbance feedforward controllers for continuous‐time, uncertain, gridded, linear parameter‐varying (LPV) systems. Integral quadratic constraints are used to describe the uncertainty. Since the gridded LPV systems do not have a valid frequency‐domain interpretation, the time domain, dissipation inequality approach is followed. There are 2 main contributions. The first contribution is that a notion of duality is developed for the worst‐case gain analysis of uncertain, gridded LPV systems. This includes notions of dual LPV systems and dual integral quadratic constraints. Furthermore, several technical results are developed to demonstrate that the sufficient conditions for bounding the worst‐case gain of the primal and dual uncertain LPV systems are equivalent. The second contribution is that the convex conditions are derived for the synthesis of robust output estimators for uncertain LPV systems. The estimator synthesis conditions, together with the duality results, enable the convex synthesis of robust disturbance feedforward controllers. The effectiveness of the proposed method is demonstrated using a numerical example.  相似文献   

9.
In this paper, we present an iterative scenario approach (ISA) to design robust controllers for complex linear parameter-varying (LPV) systems with uncertainties. The robust controller synthesis problem is transformed to a scenario design problem, with the scenarios generated by identically extracting random samples on both uncertainty parameters and scheduling parameters. An iterative scheme based on the maximum volume ellipsoid cutting-plane method is used to solve the problem. Heuristic logic based on relevance ratio ranking is used to prune the redundant constraints, and thus, to improve the numerical stability of the algorithm. And further, a batching technique is presented to remarkably enhance the computational efficiency. The proposed method is applied to design an output-feedback controller for a small helicopter. Multiple uncertain physical parameters are considered, and simulation studies show that the closed-loop performance is quite good in both aspects of model tracking and dynamic decoupling. For robust LPV control problems, the proposed method is more computationally efficient than the popular stochastic ellipsoid methods.   相似文献   

10.
针对输入受限的高超声速飞行器强耦合、强非线性以及严重不确定性的特点,提出一种参数依赖滚动时域?∞控制(PD-RHHC)的方法.首先在考虑控制输入约束的条件下,引入参数依赖Lyapunov函数和松弛因子并提出了基于LMI优化的PD-RHHC;然后采用函数替换方法,结合张量积模型转换方法实现高超声速飞行器(HSV)纵向非线性弹性模型的LPV描述,并将PD-RHHC应用到高超声速飞行器纵向控制中,以实现HSV在大飞行包线内的机动飞行;最后通过仿真实验验证了所提出算法的有效性.  相似文献   

11.
This paper proposes a new adaptive nonlinear model predictive control (NMPC) methodology for a class of hybrid systems with mixed inputs. For this purpose, an online fuzzy identification approach is presented to recursively estimate an evolving Takagi–Sugeno (eTS) model for the hybrid systems based on a potential clustering scheme. A receding horizon adaptive NMPC is then devised on the basis of the online identified eTS fuzzy model. The nonlinear MPC optimization problem is solved by a genetic algorithm (GA). Diverse sets of test scenarios have been conducted to comparatively demonstrate the robust performance of the proposed adaptive NMPC methodology on the challenging start-up operation of a hybrid continuous stirred tank reactor (CSTR) benchmark problem.  相似文献   

12.
针对一类具有不确定时变参量的线性参变(linear parameter-varying,LPV)过驱动系统的控制分配问题,考虑系统的不确定参量扰动和执行器物理约束,利用伪控指令分配误差和控制量误差的1--范数,建立了含有时变不确定因子的控制分配优化模型.根据鲁棒优化思想,采用矢量变换技术处理时变不确定因子,得到了一种基于有约束锥二次凸优化模型的鲁棒控制分配算法,实现对LPV过驱动系统伪控指令的在线优化分配.最后,对某4轮电动汽车时变二自由度转向过驱动控制系统的对比仿真实验表明,相比常规4WS和伪逆控制分配方法,本文的鲁棒控制分配算法有效地降低了系统参变量不确定扰动的影响,得到更合理的控制分配解,有效改善了车辆的操纵稳定性.  相似文献   

13.
A general approach is presented to analyze the worst case input/output gain for an interconnection of a linear parameter varying (LPV) system and an uncertain or nonlinear element. The LPV system is described by state matrices that have an arbitrary, that is not necessarily rational, dependence on the parameters. The input/output behavior of the nonlinear/uncertain block is described by an integral quadratic constraint (IQC). A dissipation inequality is proposed to compute an upper bound for this gain. This worst‐case gain condition can be formulated as a semidefinite program and efficiently solved using available optimization software. Moreover, it is shown that this new condition is a generalization of the well‐known bounded real lemma type result for LPV systems. The results contained in this paper complement known results that apply IQCs for analysis of LPV systems whose state matrices have a rational dependence on the parameters. The effectiveness of the proposed method is demonstrated on simple numerical examples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, a fault estimator with linear fractional transformation (LFT) parameter dependency is designed for the linear parameter‐varying (LPV) system of the aero‐engine with both sensor and actuator faults under disturbances. After an aero‐engine affine parameter‐dependent LPV model is derived by the linear fitting method and matrix pseudo‐inverse method, the LPV model with disturbances and fault signals is transformed into a LFT structure. Based on the full block S‐procedure, the sufficient condition for the existence of the fault estimator is proposed, which can lead to less conservative results. Then the fault estimator design algorithm which can adjust to the current system dynamic adaptively is presented. Finally, a fault estimator is designed for a turbofan aero‐engine under multiple types of faults and disturbances to demonstrate the effectiveness of the proposed method.  相似文献   

15.
A new approach for design of robust decentralized controllers for continuous linear time‐invariant systems is proposed using linear matrix inequalities (LMIs). The proposed method is based on closed‐loop diagonal dominance. Sufficient conditions for closed‐loop stability and closed‐loop block‐diagonal dominance are obtained. Satisfying the obtained conditions is formulated as an optimization problem with a system of LMI constraints. By adding an extra LMI constraint to the system of LMI constraints in the optimization problem, the robust control is addressed as well. Accordingly, the decentralized robust control problem for a multivariable system is reduced to an optimization problem for a system of LMI constraints to be feasible. An example is given to show the effectiveness of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a dynamic model of a counter flow water to oil heat exchanger when all inputs (inlet temperatures of the fluids and the mass flow rates) are simultaneously varying. Although interesting results about modeling of heat exchanger by linear parameter varying (LPV) can be found in [25], several problems remain to be solved such as the structure estimation or a proper initial MISO model for the optimization algorithms. This paper introduces a new model structure called quasi LPV model which simulates accurately the temperature and flow transients in a counter flow heat exchanger (COFHX). The quasi LPV model is compared to a realistic numerical model of a counter flow heat exchanger adjusted with the test rig heat exchanger of the University of Valenciennes in France. Comparisons indicate that the developed quasi LPV model is capable of predicting the transient performance of the heat exchangers satisfactorily.  相似文献   

17.
为了计算控制序列,非线性模型预测控制可以转换为一个带约束的非线性优化过程.本文分析了三种约束处理方案,根据遗传算法的特点,将等式约束用于状态量计算,在搜索空间降维的同时消除遗传算法难以求解的等式约束.对双容水箱进行遗传算法和序列二次规划仿真试验和实际控制,结果表明遗传算法对控制量的优化效果优于序列二次规划.为克服遗传算法耗时较长、优化结果存在随机抖动的缺点,结合序列二次规划提出一种混合优化算法,仿真和实控结果表明其可行性和有效性.  相似文献   

18.
This paper proposes a robust output feedback model predictive control (MPC) scheme for linear parameter varying (LPV) systems based on a quasi-min–max algorithm. This approach involves an off-line design of a robust state observer for LPV systems using linear matrix inequality (LMI) and an on-line robust output feedback MPC algorithm using the estimated state. The proposed MPC method for LPV systems is applicable for a variety of systems with constraints and guarantees the robust stability of the output feedback systems. A numerical example for an LPV system subject to input constraints is given to demonstrate its effectiveness.  相似文献   

19.
A practical method is proposed for the convex design of robust feedforward controllers which ensures H/L2 performance in the face of LTI and arbitrarily time‐varying model uncertainties. A technique that computes the global minimum of this difficult infinite dimensional optimization problem is proposed, as well as a suboptimal but computationally less involved algorithm. Convergence is proved. An efficient way to analyse the robustness properties of a closed loop with or without feedforward controller is obtained as a subproblem. A missile example illustrates the efficiency of the scheme: a robust feedforward controller is designed either on the continuum of linearized time‐invariant models (corresponding to trim points) or on a quasi‐LPV model representing the non‐linear one. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
This paper describes a new robust model predictive control (MPC) scheme to control the discrete‐time linear parameter‐varying input‐output models subject to input and output constraints. Closed‐loop asymptotic stability is guaranteed by including a quadratic terminal cost and an ellipsoidal terminal set, which are solved offline, for the underlying online MPC optimization problem. The main attractive feature of the proposed scheme in comparison with previously published results is that all offline computations are now based on the convex optimization problem, which significantly reduces conservatism and computational complexity. Moreover, the proposed scheme can handle a wider class of linear parameter‐varying input‐output models than those considered by previous schemes without increasing the complexity. For an illustration, the predictive control of a continuously stirred tank reactor is provided with the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号