首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
支持向量机(support vector machine,SVM)算法因其在小样本训练集上的优势和较好的鲁棒性,被广泛应用于处理分类问题。但是对于增量数据和大规模数据,传统的SVM分类算法不能满足需求,增量学习是解决这些问题的有效方法之一。基于数据分布的结构化描述,提出了一种自适应SVM增量学习算法。该算法根据原样本和新增样本与当前分类超平面之间的几何距离,建立了自适应的增量样本选择模型,该模型能够有效地筛选出参与增量训练的边界样本。为了平衡增量学习的速度和性能,模型分别为新增样本和原模型样本设置了基于空间分布相似性的调整系数。实验结果表明,该算法在加快分类速度的同时提高了模型性能。  相似文献   

2.
在如何从海量的数据中提取有用的信息上提出了一种新的SVM的增量学习算法.该算法基于KKT条件,通过研究支持向量分布特点,分析了新样本加入训练集后,支持向量集的变化情况,提出等势训练集的观点.能对训练数据进行有效的遗忘淘汰,使得学习对象的知识得到了积累.在理论分析和对旅游信息分类的应用结果表明,该算法能在保持分类精度的同时,有效得提高训练速度.  相似文献   

3.
一种SVM增量学习淘汰算法   总被引:1,自引:1,他引:1  
基于SVM寻优问题的KKT条件和样本之间的关系,分析了样本增加后支持向量集的变化情况,支持向量在增量学习中的活动规律,提出了一种新的支持向量机增量学习遗忘机制--计数器淘汰算法.该算法只需设定一个参数,即可对训练数据进行有效的遗忘淘汰.通过对标准数据集的实验结果表明,使用该方法进行增量学习在保证训练精度的同时,能有效地提高训练速度并降低存储空间的占用.  相似文献   

4.
集成多个传感器的智能片上系统( SoC)在物联网得到了广泛的应用.在融合多个传感器数据的分类算法方面,传统的支持向量机( SVM)单分类器不能直接对传感器数据流进行小样本增量学习.针对上述问题,提出一种基于Bagging-SVM的集成增量算法,该算法通过在增量数据中采用Bootstrap方式抽取训练集,构造能够反映新信息变化的集成分类器,然后将新老分类器集成,实现集成增量学习.实验结果表明:该算法相比SVM单分类器能够有效降低分类误差,提高分类准确率,且具有较好的泛化能力,可以满足当下智能传感器系统基于小样本数据流的在线学习需求.  相似文献   

5.
将SVM(support vector machine)分类的思想方法应用于个人信用评估.通过比较分析银行个人信用特征数据,设计了新的通用的银行个人信用特征数据.基于LSVM(Lagrange support vector machine)分类算法分析,将LSVM算法应用于个人信用评估,并与KNN(K-nearest neighbor)分类方法、OSU SVM3.0工具分类方法比较,实验结果表明:LSVM具有较好的分类预测能力,为个人信用评估提供了一个新的有效方法.  相似文献   

6.
情绪识别与日常生活的诸多领域都有很大联系.然而,通过单一算法难以获得较高的情绪识别准确率,为此,提出一种基于支持向量机(support vector machine,SVM)和K近邻(K-nearest neighbors,KNN)融合算法(SVMKNN)的情绪脑电识别模型.在情绪分类时,首先计算待识别样本与最优分类超平面的空间距离,若两者距离大于提前设定的阈值,选用SVM分类器对情绪样本分类,否则选用KNN分类器.最后在SEED情感数据集上进行实验测试,通过对比实验,得出SVM-KNN算法提高了情绪三分类的准确率.运用该模型可有效地对情绪类型进行识别,对于医疗护理方面获取表达障碍患者的情绪状态有积极意义.  相似文献   

7.
为了提高大规模高维度数据的训练速度和分类精度,提出了一种基于局部敏感哈希的SVM快速增量学习方法。算法首先利用局部敏感哈希能快速查找相似数据的特性,在SVM算法的基础上筛选出增量中可能成为SV的样本,然后将这些样本与已有SV一起作为后续训练的基础。使用多个数据集对该算法进行了验证。实验表明,在大规模增量数据样本中,提出的SVM快速增量学习算法能有效地提高训练学习的速度,并能保持有效的准确率。  相似文献   

8.
针对无线信道环境中,信道多径衰落和噪声不确定性等低信噪比情况下主用户信号检测性能较低的问题,提出一种基于改进型支持向量机(support vector machine,SVM)的主用户信号频谱感知算法.对信号循环平稳特征参数进行特征提取,作为训练样本和待测样本;采用改进的SVM算法分别对有无主用户情况下的信号进行分类检测.仿真结果表明,与能量检测法(ED)和循环平稳特征检测法(CD)相比较,该算法可在低信噪比情况下不受噪声不确定性等因素影响,具有较高的分类检测性能,有效地实现了对主用户信号的感知.  相似文献   

9.
化工过程故障诊断中样本数据分布不均衡现象普遍存在.在使用不均衡样本作为训练集建立各类故障诊断分类器时,易出现分类器的识别率偏置于多数类样本的结果,由此产生虽正常状态易识别,但更受关注的故障状态却难以被诊断的现象.针对该问题,本文提出一种基于Easy Ensemble思想的主元分析–支持向量机(Easy Ensemble based principle component analysis–support vector machine,EEPS)故障诊断算法,通过欠采样方法抽取多数类样本子集组建多个新的均衡数据样本集,使用主元分析(principle component analysis,PCA)进行特征提取并使用支持向量机(support vector machine,SVM)算法进行训练,得到多个基于SVM的故障诊断分类器,然后使用Adaboost算法集成最终的分类,从而提高故障诊断准确性.所提方法被用于TE(Tenessee Eastman)化工过程,实验结果表明,EEPS算法能够有效提高分类器在不均衡数据集上的诊断性能和预报能力.  相似文献   

10.
过采样和欠采样方法是处理非平衡数据集分类的常用方法,但使用单一的采样算法可能造成少数类样本过拟合或者丢失含有重要信息的样本。提出了基于分类超平面的混合采样算法SVM_HS(hybrid sampling algorithm based on support vector machine),旨在克服SVM算法在处理非平衡数据时分类超平面容易偏向少数类样本的问题。该算法首先利用SVM算法得到分类超平面。然后迭代进行混合采样,主要包括:(1)删除离分类超平面较远的一些多数类样本;(2)对靠近真实类边界的少数类样本用SMOTE(synthetic minority oversampling technique)过采样,使分类超平面向着真实类边界方向偏移。实验结果表明相比其他相关算法,该算法的F-value值和G-mean值均有较大提高。  相似文献   

11.
基于支持向量机分类的回归方法   总被引:23,自引:0,他引:23  
陶卿  曹进德  孙德敏 《软件学报》2002,13(5):1024-1028
支持向量机(support vector machine,简称SVM)是一种基于结构风险最小化原理的分类技术,也是一种新的具有很好泛化性能的回归方法.提出了一种将回归问题转化为分类问题的新思想.这种方法具有一定的理论依据,与SVM回归算法相比,其优化问题几何意义清楚明确.  相似文献   

12.
以支持向量机(SVM)为代表的人工智能技术在智能传感器系统中得到了广泛的应用,但传统的SVM有"灾难性遗忘"现象,即会遗忘以前学过的知识,并且不能增量学习新的数据,这已无法满足智能传感器系统实时性的要求。而Learn++算法能够增量地学习新来的数据,即使新来数据属于新的类,也不会遗忘已经学习到的旧知识。为了解决上述问题,提出了一种基于壳向量算法的Learn++集成方法。实验结果表明:该算法不但具有增量学习的能力,而且在保证分类精度的同时,提高了训练速度,减小了存储规模,可以满足当下智能传感器系统在线学习的需求。  相似文献   

13.
徐海龙 《控制与决策》2010,25(2):282-286
针对SVM训练学习过程中难以获得大量带有类标注样本的问题,提出一种基于距离比值不确定性抽样的主动SVM增量训练算法(DRB-ASVM),并将其应用于SVM增量训练.实验结果表明,在保证不影响分类精度的情况下,应用主动学习策略的SVM选择的标记样本数量大大低于随机选择的标记样本数量,从而降低了标记的工作量或代价,并且提高了训练速度.  相似文献   

14.
针对传统基于主动学习的支持向量机(support vector machine,SVM)方法中所采用的欧式距离不能有效衡量高维样本之间的相关程度,导致学习器泛化能力下降的问题,提出了一种基于向量余弦的支持向量机主动学习(SVM active learning based on vector cosine)策略,称为COS_SVMactive方法。该方法通过在主动学习过程中引入向量余弦来度量训练集中样本信息的冗余度,以挑选那些含有重要分类信息的最有价值样本交给专家进行人工标注,并在迭代的样本标注过程中对训练集的平衡度进行逐步调整,使学习器获得更好的泛化性能。实验结果表明,与传统基于随机采样的SVM主动学习方法(SVM active learning based on ran-dom sampling,RS_SVMactive)和基于距离的SVM主动学习方法(SVM active learning based on distance, DIS_SVMactive)相比,COS_SVMactive方法不仅可以提高分类精度,而且能够减少专家标记代价。  相似文献   

15.
基于SVM的中文组块分析   总被引:20,自引:5,他引:20  
基于SVM(support vector machine)理论的分类算法,由于其完善的理论基础和良好的实验结果,目前已逐渐引起国内外研究者的关注。和其他分类算法相比,基于结构风险最小化原则的SVM在小样本模式识别中表现较好的泛化能力。文本组块分析作为句法分析的预处理阶段,通过将文本划分成一组互不重叠的片断,来达到降低句法分析的难度。本文将中文组块识别问题看成分类问题,并利用SVM加以解决。实验结果证明,SVM算法在汉语组块识别方面是有效的,在哈尔滨工业大学树库语料测试的结果是F=88.67%,并且特别适用于有限的汉语带标信息的情况。  相似文献   

16.
一种快速支持向量机增量学习算法   总被引:16,自引:0,他引:16       下载免费PDF全文
孔锐  张冰 《控制与决策》2005,20(10):1129-1132
经典的支持向量机(SVM)算法在求解最优分类面时需求解一个凸二次规划问题,当训练样本数量很多时,算法的速度较慢,而且一旦有新的样本加入,所有的训练样本必须重新训练,非常浪费时间.为此,提出一种新的SVM快速增量学习算法.该算法首先选择那些可能成为支持向量的边界向量,以减少参与训练的样本数目;然后进行增量学习.学习算法是一个迭代过程,无需求解优化问题.实验证明,该算法不仅能保证学习机器的精度和良好的推广能力,而且算法的学习速度比经典的SVM算法快,可以进行增量学习.  相似文献   

17.
提出了一种基于高斯混合模型核的半监督支持向量机(SVM)分类算法.通过构造高斯混合模型核SVM分类器提供未标示样本信息,使得SVM算法在学习标示样本信息的同时,能够兼顾整个训练样本集合的聚类假设.实验部分将该算法同传统SVM算法、直推式支持向量机(TSVM)以及随机游走(RW)半监督算法进行分类性能比较,结果证明该算法在拥有较少标示样本训练的情况下分类性能也有所提高且具有较高的鲁棒性.  相似文献   

18.
基于支持向量机的人脸检测训练集增强   总被引:3,自引:0,他引:3  
王瑞平  陈杰  山世光  陈熙霖  高文 《软件学报》2008,19(11):2921-2931
根据支持向量机(support vector machine,简称SVM)理论,对基于边界的分类算法(geometric approach)而言,类别边界附近的样本通常比其他样本包含有更多的分类信息.基于这一基本思路,以人脸检测问题为例,探讨了对给定训练样本集进行边界增强的问题,并为此而提出了一种基于支持向量机和改进的非线性精简集算法IRS(improved reduced set)的训练集边界样本增强算法,用以扩大训练集并改善其样本分布.其中,所谓IRS算法是指在精简集(reduced set)算法的核函数中嵌入一种新的距离度量——图像欧式距离——来改善其迭代近似性能,IRS可以有效地生成新的、位于类别边界附近的虚拟样本以增强给定训练集.为了验证算法的有效性,采用增强的样本集训练基于AdaBoost的人脸检测器,并在MIT CMU正面人脸测试库上进行了测试.实验结果表明,通过这种方法能够有效地提高最终分类器的人脸检测性能.  相似文献   

19.
基于闭凸包收缩的最大边缘线性分类器   总被引:12,自引:1,他引:12  
SVM(support vector machines)是一种基于结构风险最小化原理的分类技术.给出实现结构风险最小化原理(最大边缘)的另一种方法.对线性可分情形,提出一种精确意义下的最大边缘算法,并通过闭凸包收缩的概念,将线性不可分的情形转化为线性可分情形.该算法与SVM算法及其Cortes软边缘算法异曲同工,但理论体系简单、严谨,其中的优化问题几何意义清楚、明确.  相似文献   

20.
基于支持向量机的渐进直推式分类学习算法   总被引:48,自引:2,他引:48       下载免费PDF全文
支持向量机(support vector machine)是近年来在统计学习理论的基础上发展起来的一种新的模式识别方法,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势.直推式学习(transductive inference)试图根据已知样本对特定的未知样本建立一套进行识别的方法和准则.较之传统的归纳式学习方法而言,直推式学习往往更具普遍性和实际意义.提出了一种基于支持向量机的渐进直推式分类学习算法,在少量有标签样本和大量无标签样本所构成的混合样本训练集上取得了良好的学习效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号