首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
自适应分块细节水平的多分辨率体绘制方法   总被引:2,自引:0,他引:2  
采用多分辨率体绘制医学数据时,一般使用相同的阈值或者细节水平生成纹理,很难处理大规模数据,为此提出一种多分辨率纹理生成方法.首先采用基于方差加权香农熵的自适应分块细节水平选择算法建立原始体数据的统一划分多分辨率表示;然后采用分块纹理重组操作,生成具有更高压缩率的体数据多分辨率压缩纹理.文中方法已在GPU上实现,而且实验结果对比表明,该方法既能得到较好的体数据压缩率,又能完成高质量的绘制.  相似文献   

2.
在计算机图形学领域,传统的草建模研究多基于几何学,这种方式对于大规模草地而言,要产生大量数据,场景绘制时计算复杂度较高.针对此问题,采用一种基于GPU的双向纹理函数BTF方法,压缩处理采样数据,GPU完成双向纹理重构与映射,在场景质量和速度上得到了较好效果,在实现上采用ROAM算法,实现多分辨率渲染,对距离视点较远或粗糙的地方采取粗略绘制,进一步提高了渲染速度.  相似文献   

3.
利用图形硬件的纹理映射和可编程GPU功能,高效实现基于焦点区域的体绘制.使用模板缓存检测机制把体数据标记为3个不同的区域,然后对标记区域使用基于纹理映射的方法分别绘制;同时使用基于GPU方法实现了周围区域的体轮廓绘制以及体绘制中多个转换函数的指定过程.文中方法使得体绘制系统实现容易、可扩展性好.  相似文献   

4.
脑科学是当今国际科技研究的前沿邻域,而对高精度脑成像数据进行可视化是脑神经科学在结构成像方面的基础性需求。针对高精度脑成像数据可视化过程中存在的数据量大以及绘制效率低的问题,提出了基于分类分层矢量量化和完美空间哈希相结合的压缩域可视化方法。首先对体数据进行分块,记录每块的平均值并依据块内体数据的平均梯度值是否为0进行分类;其次运用分层矢量量化对平均梯度值不为0的块进行压缩;然后用分块完美空间哈希技术存储压缩得到两个索引值;最后对上面的压缩体数据进行解码得到恢复体数据,采用分块完美空间哈希对原始体数据与恢复体数据作差得到的残差数据进行压缩。绘制时,只需将压缩得到的数据作为纹理加载到GPU内,即可在GPU内完成实时解压缩绘制。实验结果表明,在保证较好图像重构质量的前提下,该算法减少了数据的存储空间,提高了体可视化的绘制效率,从而可以在单机上处理较大的数据。  相似文献   

5.
基于GPU编程的地形纹理快速渲染方法研究   总被引:1,自引:1,他引:0  
在分析GPU并行计算特点的基础上,提出并实现了基于GPU编程的地形纹理快速渲染方法,其核心是用GPU编程对地形纹理图像进行快速解压.与传统渲染流程不同,该方法首先把压缩纹理图像传输到图形卡中,然后通过GPU编程实现对压缩图像解压的硬件加速,从而解决了海量纹理数据存储;传输带宽以及解压速度等一系列问题.实验结果表明基于GPU编程的地形纹理快速渲染方法在虚拟场景的渲染速度方面优势明显,并且随着地形纹理图像分辨率的增大这种优势体现得更加充分.  相似文献   

6.
基于GPU的交互式体数据切割   总被引:1,自引:0,他引:1  
为实现实时高效的体数据切割操作,提出一种将人机交互和基于GPU的体绘制相结合的切割方法.先通过人机交互生成多个切割体的几何形状并三角化,将其作为基于GPU的光线投射算法的代理面,然后利用深度剥离算法获得光线在所有代理面上的出入射点坐标,并用多个通道完成体绘制.该方法在单个3D纹理上进行,可以实现多个任意形状的切割体切割,在节省GPU内存空间的同时,提高了切割后的绘制效率.  相似文献   

7.
为了精确、高效地将传统二维矢量数据叠加到三维多分辨率地形上,提出一种基于视点相关透视纹理的叠加绘制算法.首先通过场景视点得到能充分逼近当前地形可视范围的透视投影,然后用该透视投影实时地将二维矢量数据绘制在与地形绑定的纹理上,同时在GPU中并行计算出纹理坐标.与传统的基于纹理的绘制方法相比,视点相关的透视投影能够提高纹理的像素利用率,从而减轻传统方法所产生的走样问题,提高矢量数据的绘制质量;且该算法不受地形几何数据的约束,能够与目前大多数多分辨率地形模型以及影像金字塔很好地结合在一起使用.  相似文献   

8.
基于小波的图像序绘制算法研究   总被引:1,自引:0,他引:1  
以三维医学CT数据为实验对象,描述基于小波的图像序列绘制的关键技术;物质人了数、体数数据的小波表示、明暗计算及体绘制积分的计算。修正现有文献中差异 分因子的定义,由此提出新的数据结构,阐述利用同一光线上相邻抽样点的相关性构造数据结构的技术,给出了简化的明暗计算方法,以重构三维数据场代替重构光亮度场,提出基于小 图像序绘制的改进算法。最后,通过实例检验了有关绘制算法的实用性能。  相似文献   

9.
为提高医学体绘制的精度和实时性,研究了多维传递函数的设计问题,基于体直方图产生多维传递函数.利用GPU的纹理特性,实现了基于GPU的多维传递函数,大大提高了绘制速度.采用划线的交互方式,使最终交互界面直观友好.研究结果表明,基于GPU的体绘制多雏传递函数的实现能够更灵活地挖掘数据的内部信息,更好地区分医学影像中的各种组...  相似文献   

10.
目的 体绘制是3维数据可视化的主要方法之一。用于体绘制的数据体中包含有大量的空体素,导致光线投射算法进行没有意义的重采样计算,必然降低绘制算法效率。针对全空子数据体体绘制低效问题,提出基于GPU体高效绘制方法。方法 利用八叉树数据结构组织数据,有效管理包含许多空体素的子数据体。通过绘制八叉树非全空叶子节点子数据体表面,使光线投射算法中起始和终止重采样位置更接近数据体中的可视部分,同时根据八叉树全空节点子数据体判定纹理查询结果,计算合适的跳跃步长,快速跳过八叉树中全空节点子数据体。结果 当数据体中空体素较多时,确定合适的八叉树深度,有效地跳过数据体中的空体素,减少体绘制运算量,实现对原基于体包围盒表面绘制的GPU光线投射算法的加速。结论 设计不透明度函数,凸显数据体中层位面,并将算法成功应用于地震数据可视化,取得很好应用效果。  相似文献   

11.
Wave-CAIPI 是一种利用多通道线圈和 k 空间螺旋轨迹采样来加速磁共振成像的新 3D 成像 方法。然而,Wave-CAIPI 采集的 3D 数据对于重建计算是巨大的。为了加速重建过程,该文使用基于图形处理器改进的共轭梯度算法实现了 Wave-CAIPI 重建,减少了重建时间。水模数据集和体内人 脑数据集的实验表明,基于图形处理器的 Wave-CAIPI 重建可以获得与传统基于中央处理器的 Wave-CAIPI 重建类似的图像结果,且重建效率显著提升。  相似文献   

12.
何希  吴炎桃  邸臻炜  陈佳 《计算机应用》2019,39(7):2008-2013
形态学重建是医学图像处理中非常基础和重要的操作。它根据掩膜图像的特征对标记图像反复进行膨胀操作,直到标记图像中的像素值不再变化为止。对于传统基于中央处理器(CPU)的形态学重建系统计算效率不高的问题,提出了使用图形处理器(GPU)来加速形态学重建。首先,设计了适合GPU处理的数据结构:并行堆集群;然后,基于并行堆集群,设计和实现了一套基于GPU的形态学重建系统。实验结果表明,相比传统基于CPU的形态学重建系统,基于GPU的形态学重建系统可以获取超过20倍的加速比。基于GPU的形态学重建系统展示了如何把基于复杂数据结构的软件系统高效地移植到GPU上。  相似文献   

13.
图形处理器在数据管理领域的应用研究综述   总被引:1,自引:0,他引:1       下载免费PDF全文
比较了中央处理器和图形处理器体系结构的异同,并简要介绍了最新的图形处理器通用计算平台及不同体系结构间并行算法的异同。详细叙述了图形处理器在空间数据库、关系数据库、数据流和数据挖掘及信息检索等方面应用的技术特点;探讨了基于图形处理器的各种内外存排序算法及性能;描述了基于图形处理器的各种数据结构和索引技术;阐述了图形处理器算法优化方面的工作。最后,展望了图形处理器应用于数据管理的发展前景,并分析了这一领域未来所面临的挑战。  相似文献   

14.
锥束计算机断层扫描(Cone-Beam Computed Tomography,CBCT)具有采集速度快和空间分辨率高等特点,被生物医学等领域广泛关注。然而通过CPU串行处理CBCT重建中海量投影数据非常耗时,难以满足实时性的需求。GPU的发展为CBCT重建的并行加速提供了条件。根据三角函数周期性的特点对FDK算法进行了改进,并利用GPU实现了12幅投影数据同时并行计算。实验结果表明,相比于传统基于CPU的重建算法,基于GPU的CBCT重建算法在保证图像质量的前提下,将重建速度提高了超过310倍。  相似文献   

15.
We present a novel interactive framework for improving 3D reconstruction starting from incomplete or noisy results obtained through image-based reconstruction algorithms. The core idea is to enable the user to provide localized hints on the curvature of the surface, which are turned into constraints during an energy minimization reconstruction. To make this task simple, we propose two algorithms. The first is a multi-view segmentation algorithm that allows the user to propagate the foreground selection of one or more images both to all the images of the input set and to the 3D points, to accurately select the part of the scene to be reconstructed. The second is a fast GPU-based algorithm for the reconstruction of smooth surfaces from multiple views, which incorporates the hints provided by the user. We show that our framework can turn a poor-quality reconstruction produced with state of the art image-based reconstruction methods into a high- quality one.  相似文献   

16.
使用GPU编程的光线投射体绘制算法   总被引:6,自引:0,他引:6  
将传统的光线投射体绘制算法在具有可编程管线的图形处理器(GPU)上重新实现.首先将体数据作为三维纹理保存在显存中,然后通过编写顶点程序和片段程序将光线进入点/离开点计算和光线遍历的计算移入GPU中执行,最后根据不同的采样点颜色混合公式实现不同的绘制效果.文中算法仅需绘制一个四边形即可完成三维重建.实验结果表明:在进行光照效果的重建时,该算法能够达到实时交互的绘制要求,并能实现半透明等复杂绘制效果.  相似文献   

17.
近年来,基于图形处理器的通用计算获得了广泛关注,并在多个领域取得了进展.内存OLAP减少了磁盘I/O,但基于单核或多核CPU的计算能力及cache miss成为新的性能瓶颈,从而无法保证好的效率.而图形处理器由于其众多核和高带宽能够很好地适应OLAP计算特性.通过图形处理器来加速任一cuboid的计算,从而提高整个内存OLAP系统的性能.提出了基于图形处理器的分块并行算法,并对算法进行了优化及讨论了数据稀疏和数据分布倾斜等不同条件下的算法.算法通过扩展可以突破内存限制,组成磁盘、内存、显存三级流水线,适应海量数据计算;同时算法也可以作为计算整个cube的基础.通过实验比较,基于图形处理器的算法明显优于四核CPU算法.  相似文献   

18.
电力系统故障录波数据是分析电网故障的主要依据,录波数据压缩有益于减小数据存储容量和提高数据传输效率。针对电力故障录波数据的格式及构成特点,提出了一种基于傅里叶变换和小波包变换的数据压缩新算法。采用离散傅里叶变换对录波模拟量通道的B时段数据进行压缩和重构,根据重构误差判断该通道是否为故障通道;对故障通道的暂态扰动时段采用小波包变换进行压缩,对正常通道及故障通道的其他时段采用傅里叶变换进行压缩。大量录波文件的压缩结果和工程实际应用表明,所提算法可以同时获得很高的压缩率和压缩精度,具有广阔的应用前景。  相似文献   

19.
针对压缩感知理论(CS)应用在无线传感器网络中时序信号在传输过程存在压缩比率低、通信能耗高等问题,提出了一种时序信号分段压缩算法来解决在信号稀疏度未知及高稀疏度条件下,压缩感知数据重构算法中存在的重构效率低,重构精度差,影响网络生命周期的问题.该算法将采集数据中非零元素个数作为分段依据,通过减少段内非零元素组合数量来提高信号重构精度,同时利用了压缩感知理论特性实现了对信号的高压缩率.实验结果表明,在以混沌量子免疫克隆重构(Q-CSDR)算法为重构算法、在信号盲稀疏度及稀疏度高于40的条件下,能够以大于0.4的压缩比率对信号进行压缩,其重构信号的均方误差小于0.01,能够延长网络寿命2倍左右.  相似文献   

20.
工业控制中需要记录大量的历史数据,因其数据量庞大,需要的存储空间也及其庞大,同时网络传输过程的实现比较困难,针对这一情况,提出了一种基于整数小波变换和多级树集合分割编码压缩新算法,并在DSP平台上实现,给出仿真结果,结果表明此算法可方便地控制数据压缩比和重构误差,并且具有压缩速度快、熏构误差小和压缩比高的特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号