首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 863 毫秒
1.
基于三维流动理论及计算流体动力学(CFD)对轿车扁平化液力变矩器设计及内部流场的流动状况进行研究,其研究成果对循环圆的设计和叶片设计提供了新思路和方法,通过扁平化液力变矩器流场的研究和分析,为变矩器的进一步优化提供了理论依据,其流场的CFD计算方法也为不同扁平率的液力变矩器计算提供了借鉴和方法.  相似文献   

2.
为解决整机循环工况与液力变矩器的匹配问题,并建立变矩器设计参数与整机工况的动力学映射关系,本文提出循环工况条件下变矩器叶片角设计空间的性能优化方法。该方法在整机物理实验条件下,以其变矩器的统计循环工况加权效率为评价目标,利用变矩器一元束流理论及其流固耦合仿真结果构建变矩器性能模型,对变矩器叶片角设计变量进行优化。优化过程中以整机V型和T型典型工况及双涡轮变矩器为研究对象,在变矩器流固耦合仿真精度得到台架实验验证的前提下,证明优化后变矩器统计循环工况加权效率分别提升2.64%和2.48%。该方法简易性地建立了整机与变矩器叶片角设计参数间的一体化动力学匹配关系,对同类面向主机的配件定制化设计具有工程化指导价值。  相似文献   

3.
液力变矩器叶栅动量矩分配规律   总被引:3,自引:0,他引:3  
基于液力变矩器叶栅传统一维束流理论的分析,对传统的等动量矩设计方法进行了改进研究,提出动量矩不等分配法。应用计算流体力学,针对泵轮、涡轮和导轮叶片的三种典型动量矩分配方案分别进行了计算比较,从而获得了液力变矩器叶片动量矩分配的基本规律。  相似文献   

4.
液力变矩器叶片三维成型法及其性能分析   总被引:3,自引:0,他引:3  
探讨了液力变矩器叶片三维成型方法,提出了叶片三维成型方法的基本设计流程。通过对不同参数变化规律生成的泵轮、涡轮、导轮的叶型进行对比分析,总结出液力变矩器叶片角变化对液力变矩器性能影响的基本规律。通过CAD/CFD技术完成叶片的设计和相应变矩器性能的计算。同时,通过与作为基型的W305型液力变矩器的比较,证明了研究结论的可靠性。  相似文献   

5.
为避免传统叶片制造过程中反复修模、试模问题,本文提出了一种对带有加强筋和折边的YJC265冲焊型液力变矩器泵轮和涡轮的叶片成形进行精密控制的方法。该方法能够预测出叶片制造过程中出现的回弹量,并按计算结果补偿叶片模具型面,得到理想的叶片冲压件;又通过成形回弹计算与模具补偿方法,制造了YJC265液力变矩器样机,且样机性能试验结果超过了设计要求,生产周期和成本远远小于传统方法。本文提出的方法能够保证叶片回弹的精度,指导叶片模具设计,保证模具开发的一次成功率,对变矩器叶片的实际生产具有重要意义。  相似文献   

6.
液力变矩器导轮空转特性无叶片数值仿真   总被引:1,自引:0,他引:1  
分析了导轮在液力变矩器工作液体循环中的导流作用,在此基础上提出一种无叶片数值仿真方法。采用该仿真方法,直接获取了各导轮空转工况下变矩器的转矩特性和循环流量特性,并通过设定监控点来观测相应的导轮空转转速。与传统方法仿真结果和现有试验数据进行了对比,结果表明:无叶片法具有较高的仿真精度,并有效减少了导轮空转仿真的计算量。  相似文献   

7.
双循环圆液力缓速器叶形设计方法   总被引:1,自引:0,他引:1  
为提高双循环液力缓速器制动功率密度,对其叶形设计方法开展研究.针对双循环液力缓速器弯叶片叶形结构特点,提出相切圆弧叶形设计法,以叶形包角与工作面圆弧半径为设计变量,建立叶形设计参数化模型.利用试验设计方法对不同叶形参数的双循环液力缓速器弯叶片进行实例设计,并与样机制动性能进行对比.结果表明:样机仿真与试验的制动力矩平均相对误差在5%以内,数值计算方法准确可靠;基于相切圆弧叶形设计法建立的弯叶片制动力矩变化范围较大,通过设定合适的叶形参数,缓速器制动性能可得到有效提高.  相似文献   

8.
为深入了解铸造型与冲焊型液力变矩器的性能差异及其产生原因,结合CFD(computational fluiddynamics)技术的发展,基于相同循环圆、相同叶栅角度设计出2种制造工艺的液力变矩器.采用CFD软件对液力变矩器内部流场进行数值模拟,得到其内部流动特性和外部特性.对计算结果进行深入对比与分析,得到2种制造工艺对液力变矩器性能的影响规律.  相似文献   

9.
液力变矩器循环圆的综合描述及导数修正法   总被引:6,自引:0,他引:6  
根据液力变矩器三圆弧循环圆的设计思想 ,导出了适合于各类循环圆的数学表达式 ,推导了实现各类循环圆的判别条件 ,并提出了循环圆导数修正法 ,设计了实例  相似文献   

10.
柴油发动机与液力变矩器的匹配合理与否,关系到其各自性能的发挥及铲土运输机械整机性能的好坏。应正确分析柴油发动机液力变矩器的特性,明确影响其共同工作点的因素,通过科学选择变矩器直径、改变转速比、合理设计变矩器的结构参数、分配发动机功率等措施,使柴油发动机与液力变矩器合理匹配。  相似文献   

11.
A flexible flat torque converter was proposed to fulfill the requirement of miniaturization and power density maximization for automobiles.Constructed by two arcs joined by lines,the torus was designed directly from design path.The influence of flatness on the performance of the torque converter was evaluated.The software CFX and standard k-ε model were adopted to simulate the internal flow fields of the torque converter under different flatness ratios.The results indicated that the performance of the torque converter got worse as the flatness declined,but the capacity of pump increased.The efficiency and the torque ratio dropped slightly as the flatness ratio decreased.So the torque converter could be squashed appropriately to get high power density without too much efficiency sacrifice.But when the flatness ratio was below 0.2,there was a significant drop in the efficiency.  相似文献   

12.
本文主要介绍三圆弧液力变矩器循环圆的计算方法。这种方法也适用于二圆弧变矩器循环圆的计算。为便于应用,文中最后将公式汇总列成表,按表中公式顺序可方便地进行三圆弧循环圆的计算。  相似文献   

13.
基于三维流场计算的液力变矩器特性预测方法   总被引:5,自引:0,他引:5  
为了改进液力变矩器特性计算方法,应用CFD软件对液力变矩器内流场进行数值计算,根据得到的内流场速度与压力信息,计算液力变矩器叶轮转矩,得到变矩器性能参数,从而预测所设计变矩器性能.为验证性能预测准确性,将W350液力变矩器基于三维流动数值解的性能计算结果与试验结果进行对比、分析,二者在数值上有良好的吻合,表明基于三维流场数值解的液力变矩器特性预测方法比传统的一维束流理论预测精确度更高,可以应用于工程实际.  相似文献   

14.
为了提高液力变矩器的性能和效率,在改变叶轮和叶片常规参数的基础上,将仿生学技术融入到叶片设计和试验当中.首先介绍了仿生植物叶片表面和仿生动物皮肤表面设计叶片的思想,然后给出了仿生叶片的制造过程,最后利用研制的试验台对设计的仿生叶片进行了压降性能测试.试验表明,该仿生叶片的减阻特性优于光滑叶片,进而可减小液力变矩器的内部流动损失,提高液力变矩器的整体效率.该试验设计思路和实施过程还可为如何利用仿生学的思想解决工程实践中遇到的问题提供借鉴.  相似文献   

15.
基于遗传算法的液力变矩器性能参数优化研究   总被引:2,自引:0,他引:2  
针对提高液力变矩器计算工况最高效率的要求,依据一元流束理论以及能量守恒定律,提出了以计算工况液力变矩比最大为目标函数的优化设计模型,采用遗传算法对各工作轮的叶栅进出口角度进行优化,并将该方法应用于YB380型液力变矩器叶栅进出口角度的优化.结果表明,通过优化使计算工况最高效率由0.866提高到0.9,从而证明所提出优化设计模型的准确性,  相似文献   

16.
为了提高风力机气动载荷的三维计算能力与计算稳定性,采用螺旋尾涡升力线模型来研究叶片气动性能参数.通过对附着涡分布、控制点的诱导速度以及迭代法求解算法等问题进行研究和分析,计算了风力机的各项气动性能参数,并建立了基于螺旋尾涡升力线模型的水平轴风力机风轮气动性能数值分析算法.在FORTRAN平台中创建了分析程序,计算了风力机的气动载荷并与传统叶素动量理论进行了对比.结果表明,所开发的数值计算模型具有较高的计算能力与计算稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号