首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
厌氧氨氧化反应器的启动及其稳定性研究   总被引:2,自引:0,他引:2  
以硝化污泥为接种污泥,采用含氮模拟废水,在进水pH值为8.0、温度为(30±0.5)℃的条件下运行120 d,成功启动了厌氧氨氧化生物膜反应器.结果表明:在水力停留时间为1.1 d、总氮容积负荷(以N计)为0.109 kg/(m3·d)时,总氮去除率约81.05%,NH 4-N和NO-2-N平均去除率分别为86.68%和96.04%,NH 4-N去除量、NO- 2-N去除量及NO-3-N生成量的比值为1∶1.16∶0.30.启动成功后,将反应器停止运行15 d,再以同样条件重新运行,仅用10 d即完全恢复了活性,表明厌氧氨氧化生物膜反应器具有良好稳定性.  相似文献   

2.
目的研究UAF(升流式厌氧生物滤床)反应器实现厌氧氨氧化反应快速去除水中总氮问题.方法试验用水为人工配制,采用城市污水处理厂厌氧消化污泥作为接种污泥,在温度为35℃、pH为7.0~8.0的条件下,通过逐渐提高NH4^+N与NO2^-N的负荷培养厌氧氨氧化细菌.结果反应器连续运行约156d后,NH4^+-N和NO2^--N的去除率分别达到50%、55%,获得的具有厌氧氨氧化活性的污泥为棕红色,并在反应器的下部形成了颗粒污泥;试验末期通过向进水中投加消氧剂抗坏血酸,NH4^+-N与NO2^--N的去除率分别提高到71%和73%.结论利用UAF反应器成功实现了厌氧氨氧化工艺的快速启动.  相似文献   

3.
UASB-生物膜反应器厌氧氨氧化反应的启动研究   总被引:3,自引:0,他引:3  
以一套有效容积为3.2L的UAS&生物膜系统,接种垃圾填埋场渗滤液处理活性污泥,以自配含NH4^+-N和NO2^--N的废水为进水,对ANAMMOX反应过程的启动进行了研究。结果表明:在反应器运行的第56d,NH4^+-N、NO2^--N、TN的去除率分别为99.8%、98.8%、90.2%,成功启动了厌氧氨氧化,且在随后的运行中处理效果稳定。ANANMMOX稳定运行时,去除的NH4^+-N、NO2^-N和生成的NO3^-N的比例为1:1.61:0.25,出水pH稳定在8.3左右,进、出水碱度变化不大。获得的具有厌氧氨氧化活性的生物膜为褐色,并在反应器的下部形成了褐色和粉红色两种颗粒污泥。  相似文献   

4.
有机碳源条件下的厌氧氨氧化研究   总被引:4,自引:0,他引:4  
通过连续试验和血清瓶批式试验研究了有机碳源条件下的厌氧氨氧化代谢特性。在pH8.0、温度30℃和水力停留时间1 d的条件下,采用含1.16 mmol/L乙酸盐的模拟含氮废水对自养厌氧氨氧化污泥连续驯化145 d,NH4+-N、NO2--N、NO3--N和COD都得到稳定去除,低浓度的乙酸盐对厌氧氨氧化还具有一定的促进作用。厌氧氨氧化的适宜乙酸盐-C/NH4+-N摩尔比为0.73,乙酸盐-C/NH4+-N摩尔比高于1.04时,厌氧氨氧化反应受到明显的抑制。青霉素添加试验表明,厌氧氨氧化菌具有代谢多样性,在低浓度乙酸盐条件下,厌氧氨氧化菌同时具有自养厌氧氨氧化和异养反硝化代谢能力。  相似文献   

5.
试验采用实验室装置和现场中试装置以阜阳金种子酒厂废水为进水,采用IC厌氧反应器+SBAR反应器中试处理工艺,IC厌氧反应器的进水COD和NH4+-N浓度分别为30000mg/L和160mg/L,出水浓度COD和NH4+-N达到1000mg/L和70mg/L左右,一、二级IC厌氧反应器COD去除率分别达到85%、75%以上,NH4+-N去除率分别在22%、17%左右;SBAR反应器的水力停留时间是480 min,COD容积负荷达到4.0 Kg COD/(m3d),出水COD、NH4+-N去除率分别稳定达到在92%、79%以上,出水pH值在7.0以上.该工艺处理最终出水COD和NH4+-N浓度则分别低于100mg/L、10mg/L.出水均达到《发酵酒精和白酒工业水污染排放标准》(GB27631-2011).  相似文献   

6.
NH4^+-N与N02^- -N对连续流CANON反应器运行性能的影响   总被引:3,自引:0,他引:3  
为提高CANON反应器的TN去除效率,采用在好氧条件下直接启动的CANON反应器进行试验.试验过程中,控制温度在35℃±1℃、pH在7.39~8.01、曝气量为31.2 m3/(m3.h)、ρ(DO)约1.5~2.0 mg/L,水力停留时间为3.7 h,分别进行了ρ(NH4+-N)与ρ(NO2--N)的试验.试验发现,在曝气量恒定的条件下,ρ(NH4+-N)过高或过低都不利于TN去除率的提高,在上述试验条件下,当ρ(NH4+-N)为310~360 mg/L时,获得超过75%的TN去除率.提高反应器中的ρ(NH4+-N)与ρ(NO2--N)有利于TN负荷的提高,但二者超过50 mg/L时,继续提高无益.在进水不包含有机碳源的条件下,CANON反应器出水的ρ(TN)依然较高,还需要进一步的处理来满足排放标准.  相似文献   

7.
对两段式固定床厌氧反应器处理含愈创木酚废水的特性进行了研究.试验结果表明,当水力停留时间(HRT)为24 h时,废水中的4种愈创木酚几乎完全被去除.在处理过程中,两个反应器内微生物的群落结构没有明显的变化.  相似文献   

8.
短程反硝化作为厌氧氨氧化反应基质亚硝酸盐(NO2--N)获取的新途径,近年来受到广泛关注.短程反硝化与厌氧氨氧化耦合的污水脱氮工艺具有重要应用潜力.然而,城市污水基质浓度较低且波动频繁,有效实现厌氧氨氧化菌持留与富集是该工艺稳定脱氮的关键.针对上述问题,构建了基于生物膜的短程反硝化耦合厌氧氨氧化工艺,采用2种结构不同的生物填料为载体,对比系统长期脱氮性能,重点考察氮负荷降低过程中系统氮素转化规律及菌群活性变化,深入分析生物膜胞外聚合物(extracellular polymeric substances,EPS)产生特性.结果表明,以含氨氮(NH4+-N)与硝酸盐氮(NO3--N)废水为处理对象,乙酸钠为有机碳源,分别采用聚氨酯海绵填料(R1)和聚乙烯空心环填料(R2)成功构建了短程反硝化耦合厌氧氨氧化生物膜系统.进水NH4+-N与NO3--N由150 mg/L逐渐降低至50 mg/L、氮负荷由0.6 kg/(m3·d)降为0.2 kg/(m3·d)时,R1和R2维持高效稳定脱氮,低负荷阶段平均总氮(TN)去除率分别为87.6%和83.6%.厌氧氨氧化作用始终为主要脱氮途径,其占两系统TN去除的贡献率分别高达98.2%和97.4%.生物膜短程反硝化速率随氮负荷减少而降低,但高NO2--N积累特性未受影响,R1系统NO2--N积累效率达到95.1%且高于R2(89.8%),其厌氧氨氧化活性降低程度小于R2,表明聚氨酯填料更适合低负荷下该工艺长期运行.低负荷下微生物分泌更多EPS,蛋白质含量增加有助于系统应对氮负荷变化.综上,短程反硝化耦合厌氧氨氧化生物膜工艺处理低基质废水时具有稳定高效的重要优势,为解决厌氧氨氧化应用的瓶颈问题提供了新方法,具有研究意义和应用价值.  相似文献   

9.
上流式厌氧生物滤池处理高含盐废水的试验研究   总被引:10,自引:0,他引:10  
对利用上流式厌氧生物滤池反应器(Upflow anaerobic Biofilter,UBF)处理高含盐有机废水的情况进行了试验研究.结果表明,在容积负荷4 kgCOD/(m3- d),进水氯离子浓度在3 000 mg/L,水力停留时间24 h时,COD去除效率达到85%左右.  相似文献   

10.
化学沉淀法去除垃圾渗滤液中氨氮的试验研究   总被引:27,自引:0,他引:27  
深圳下坪垃圾填埋场渗滤液的COD浓度为6808mg/L,NH3-N的浓度高达3220mg/L.采用厌氧生物处理法处理有机物浓度高的废水时,由于过高的NH3-N对生物有抑制或毒害作用,为提高废水的可生化性,需降低渗滤液里的NH3-N浓度.本试验采用了盐酸、氧化镁和磷酸作为去除NH3-N的沉淀药剂.沉淀药剂与渗滤液中的NH3-N发生化学反应,生成六水硫酸铵镁(MgNH4PO4·6H2O)沉淀物.试验反应速度快,没有二次污染,而且六水硫酸铵镁可作为多种农作物的复合肥.在pH=9 5的试验条件下,当n(NH+4)=1∶1 2∶1时,渗滤液中NH3 N的去除率达76 2%,并且可同4)∶n(Mg2+)∶n(PO3-时去除渗滤液中的40%的COD.  相似文献   

11.
加料流率对SFBR工艺去除营养物的影响   总被引:1,自引:0,他引:1  
采用序半连续式反应器在不同的加料流率下,对人工合成废水营养物的去除进行了研究.氮化合物的去除是在一个操作循环中采用顺序进行硝化和反硝化反应,加料流率分别为0.05,0.10,0.15 L/h 3个不同的水平,不同的加料流率对COD,氮化合物(NH4-N和NO3-N)去除和微生物生长的影响进行了研究.结果表明,加料流率对COD、氮化合物(NH4-N和NO3-N)去除和微生物生长的都有一定的影响.当加料流率为0.05 L/h时,COD有最高去除率(84%)、最高的总氮去除率(64%),微生物的生长速率没有明显的影响.并利用一组涉及到多个微生物反应的动力学数学模型,分析了加料流率对同时去除碳、氮化合物率和微生物生长的影响.  相似文献   

12.
生物强化生态床修复景观水过程中氮转化积累研究   总被引:4,自引:0,他引:4  
以沸石和煤渣为主要基质构建复合生态床修复景观水体,从土著微生物中筛选驯化优势菌群对修复过程强化,考察生物强化过程对系统氮污染去除的强化及系统内氮的转化途径,并以天然土著微生物群强化和无生物强化为对比.结果表明,无生物强化的自然基质生态床可在短时间内通过离子交换吸附作用将ρ(NH_4~+-N)降低,系统内存在硝化作用,且NO_3~--N发生积累;而优势菌群强化系统对ρ(NH_4~+-N)的降低较快,且最后ρ<0.5 mg/L,NO_3~--N积累量较小;优势菌群使系统很好完成对氮的循环去除.且优势菌群强化系统离子交换去除率及硝化去除率延程均显著提高,即从原污染水中驯化的氮转化功能菌群能强化系统的氮转化,菌群功能与活性在延程中受到影响较小.  相似文献   

13.
高浓度氨氮废水自养半短程硝化试验   总被引:1,自引:0,他引:1  
在SBR反应器中采用消化污泥驯化启动自养半短程硝化系统。在温度35±1℃,溶解氧浓度(DO)1.0~1.5mg/L的条件下,可实现反应器的短程硝化。试验结果表明:反应器进水NH3-N浓度为510mg/L、HRT=12h、DO=0.8~1.2mg/L、pH=7.5~8.3时,SBR反应器出水NO2^--N和NH3-N的平均浓度分别为253.7和246.9mg/L,P(NO2^--N)/p(NH3-N)为1.02,满足ANAMMOX反应器的进水要求。  相似文献   

14.
复合生物反应器亚硝酸型同步硝化反硝化   总被引:2,自引:1,他引:1  
以实际生活污水为对象,利用有效容积为12L的间歇式复合生物反应器(填料体积填充比为30%),通过控制ρ(DO)稳定实现了亚硝酸型同步硝化反硝化脱氮.试验结果表明,在同步硝化反硝化条件下,随着ρ(DO)的升高,亚硝化率逐渐降低,总氮去除率也呈下降趋势.曝气结束,ρ(DO)>4 mg/L时,系统的亚硝化率和总氮去除率均小于50%;当ρ(DO)为2 mg/L,温度维持在(28±1)℃,硝化过程中亚硝化率始终维持在85%以上,ρ(NH_4~+ -N)去除率大于98%,总氮去除率在75%左右.因此,在试验条件下,只要控制曝气量,使得曝气结束时反应器内ρ(DO)为2 mg/L,就可实现稳定的亚硝酸型同步硝化反硝化生物脱氮.  相似文献   

15.
内循环对A2/O工艺脱氮的影响   总被引:1,自引:0,他引:1  
采用有效容积为52L的A~2/O工艺,以实际生活污水为水源,研究了不同进水ρ(NH_4~+-N)负荷条件下,内循环回流比对系统脱氮效率的影响.实验结果表明,硝化速率随着进水ρ(NH_4~+-N)负荷增加而升高,系统脱氮效率随着内循环回流比增加而升高,内循环回流比从0增加到6,系统脱氮效率升高了14.0%,其中,ρ(NO_x~-N)去除率升高了10.2%,ρ(NH_4~+-N)去除率升高了3.8%.为稳定出水中氮的浓度、降低运行费用,内循环回流比应随进水ρ(NH_4~+-N)负荷的增加而增加,一般情况下内循环回流比易控制在2左右.  相似文献   

16.
通过聚乙烯醇(PVA)缩甲醛交联反应制备的凹土/PVA多孔载体,具有比表面积大、孔隙丰富、挂膜启动速度快、附着生物量大等特点,应用于生物流化床处理有机废水可取得较好的处理效果。20d挂膜启动试验表明,在凹土/PVA多孔载体投加量(堆积体积)为曝气区容积20%的条件下,模拟废水进水COD1000~3000 mg/l,进水COD负荷不超过8.7kg·m-3·d-1时,COD去除率可保持90%以上。对氨氮也有较高的去除能力,进水氨氮浓度100 mg/l以内,停留时间为12 h时,稳定运行时氨氮去除率可保持在90%以上。  相似文献   

17.
采用多孔混凝土为生态护岸载体,联合微生物、绿色植物等生态因子构建特定岸坡生态系统来研究水源地水质改善效果。实验结果表明,在停留时间(RT)为6d时,系统对CODMn、UV254、NH4^+-N、NO2^-N、TN的平均去除率分别达到20.9%、13.4%、81.4%、96.8%和67.7%,相比硬质化岸坡的空白渠,CODMn、UV254、NH4^+-N、NO2^-N、TN的平均去除率仅为9.6%、5.0%、70.8%、42.4%和34.6%。通过该系统中多孔混凝土载体、水生植物和基质上富集的微生物等生态因子协同作用,使得有机物、氮类污染物去除效果明显。  相似文献   

18.
为确定气水交替式膜生物反应器(AMBR)处理污水时的适宜碳氮比,实现较好的同步脱氮除碳效果,构建以2片亲水性聚丙烯中空纤维膜轮流作为曝气膜和出水膜的AMBR,在150d连续运行的时间内,考察碳氮比对AMBR处理模拟生活污水同步脱氮除碳的影响.结果表明:将混合液中DO的质量浓度控制在0.5 mg/L左右,进水COD和NH...  相似文献   

19.
研究以陶粒粒子为载体,采用快速排泥挂膜法,在内循环三相流化床反应器运行过程中逐渐加大进水量和进水浓度,使微生物适应高氨氮废水环境;研究了水力停留时间、NH4+-N浓度负荷冲击对NH4+-N去除率的影响.结果表明:内循环三相流化床可用于处理高NH4+-N废水;底物浓度越高水力停留时间越长;内循环三相流化床具有较好的抗负荷冲击能力,有利于解决实际废水水质不稳定难以达标排放的困难.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号