首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
采用精炼钢包对两种含不同粒度SiC的Mg O-Al_2O_3-C(MAC)材料在包壁部位进行了115~135炉的工业试验,发现SiC粒度显著影响MAC材料的侵蚀速率,采用平均粒径D50=24.58μm的SiC粉的MAC材料的侵蚀速率为1.05 mm/炉(135炉),采用平均粒径D50=4.34μm的SiC粉的MAC材料侵蚀速率为1.30 mm/炉(115炉)。对用后MAC材料的损毁机理研究表明:2种材料中SiC都与CO(g)反应生成SiO(g),一部分SiO(g)继续与CO(g)反应生成SiO_2(s)和C(s),利用体积膨胀促进了材料结构致密化,大幅提高了抗氧化性能;而另一部分SiO(g)直接溢出MAC材料。当SiC粒度较大时,SiC与CO(g)反应较慢,减少了SiO(g)直接溢出,生成更多SiO_2(s),使得组织结构更致密,抑制了MAC材料中C的氧化,材料组成与结构保持更加完好,强度较高,具有更高的抗钢水冲刷磨损能力;SiC粒度大,在提高材料抗氧化能力的同时,也减少了材料与熔渣的接触面积,降低了MgO向熔渣的溶解速率。故在精炼钢包环境中,平均粒径D50=24.58μm的SiC比D50=4.34μm的SiC更利于提高MAC材料的抗侵蚀能力。  相似文献   

2.
SiC结合刚玉材料的抗高炉渣侵蚀性   总被引:1,自引:0,他引:1  
采用电熔刚玉、Si粉和SiC粉为原料,用酚醛树脂做结合剂,混练成型后于1 450℃埋炭烧成,采用静态坩埚抗渣试验研究了烧后试样对碱度为1.1的高炉渣在1 500℃的抗渣侵蚀性。结果表明:Si与C、CO在高温下原位反应生成纤维状SiC,形成原位SiC结合刚玉材料,该材料具有良好的抗侵蚀性能,渣蚀厚度都在2.6mm以下,其中,加入8%(w)Si粉和5%(w)SiC粉的试样抗渣侵蚀性最好。通过对抗侵蚀后试样的侵蚀层、渗透层和未变层的相组成和显微结构的分析认为:(1)这种复合材料抗渣侵蚀性能良好的主要原因是熔渣难润湿的SiC自身抗渣侵蚀性较好,且原位生成的纤维状SiC穿插在刚玉骨架结构的空隙中,阻挡了熔渣的侵蚀和渗透;(2)熔渣侵蚀材料的过程是SiC先被氧化,然后其氧化产物SiO2与熔渣中的CaO和SiO2以及材料基质中的A l2O3反应生成钙长石低熔相。  相似文献   

3.
以电熔镁砂、碳化硅、鳞片石墨(w(C)>97%)、铝粉(≤0.088mm,w(Al)>98%)和硅粉(≤0.088mm,w(Si)>98%)为主要原料,按w(电熔镁砂)=81%,w(SiC)=10%,w(鳞片石墨)=4%,w(铝粉 硅粉)=5%的组成配料,以酚醛树脂为结合剂,压制成125mm×25mm×25mm的MgO-SiC-C试样,在220℃干燥24h后采用感应炉法进行了抗转炉终渣试验,并对抗渣试验后试样进行了XRD、SEM和EDAX分析。结果发现熔渣对MgO-SiC-C试样的侵蚀和渗透并不显著,试样的侵蚀速率为0.25~0.3mm·h-1;抗渣试验后试样原质层主要组成为MgO、SiC和MgO·Al2O3;在与熔渣接触后,SiC被氧化成SiO2,由此导致在试样和熔渣间形成一高粘度的液相反应层,有效地减轻了试样受熔渣渗透和侵蚀的程度,提高了试样的抗渣能力。  相似文献   

4.
SiC/SiAlON对原位SiC结合刚玉材料抗侵蚀性的影响   总被引:2,自引:2,他引:0  
采用矾土基高铝刚玉为骨料,以电熔刚玉细粉、Si粉、SiC粉或SiAlON粉为基质料,用酚醛树脂为结合剂,试样于1450℃埋炭烧成后,制备了烧结良好的原位SiC结合刚玉复合材料;采用静态坩埚法研究了加入SiC或SiAlON对这种复合材料抗渣性的影响.结果表明:原位SiC结合刚玉材料具有良好的抗侵蚀性能,加入适量SiC或SiAlON后复合材料的抗侵蚀性进一步提高;原位SiC结合刚玉基材料抗侵蚀行为和机理为:熔渣侵蚀材料的过程是SiC和SiAlON等非氧化物先被氧化,然后其氧化产物SiO2和Al2O3与熔渣中的CaO和Al2O3以及材料基质中的Al2O3反应生成钙长石,材料被侵蚀;原位生成的SiC难被熔渣润湿,且填充在气孔中,堵塞了熔渣渗透的主要通道;加入SiC和SiAlON,材料中非氧化物的量明显增多,因此抗侵蚀性明显提高.  相似文献   

5.
以膨胀石墨与微米粒径鳞片石墨为主要碳源制得的两种低碳镁碳材料为对象,研究了其在VOD精炼钢包渣线部位工业试验的侵蚀机理。研究发现,含微米粒径鳞片石墨镁碳材料与渣层之间形成了MgO致密层和致密渗透层,而膨胀石墨由于氧化后在原位形成大尺寸孔隙不利于致密层的形成,使得后者与渣层之间未能形成MgO致密层。MgO致密层的形成抑制了高温、低压精炼环境下MgO-碳系统中MgO-碳间的氧化反应与碳的直接燃烧氧化反应,改善了材料的抗侵蚀性能。因此,含膨胀石墨低碳镁碳材料的平均侵蚀速率比含微米粒径鳞片石墨的低碳镁碳材料高45%。在此基础上,提出了工业试验条件下两种低碳镁碳材料的侵蚀机理。  相似文献   

6.
采用真空感应炉浸棒法,在真空度为5 kPa,于1 650 ℃保温25 min的试验条件下研究了w(C)约为10%的MgO-C材料的抗熔渣侵蚀性;对试验后的试样进行观察与测量,并用SEM分析了侵蚀后试样显微结构.结果表明:在本试验条件下,熔渣的侵蚀速率大于MgO与C反应的脱碳速率,随着CaO-SiO<,2>渣系碱度的提高,MgO-C材料侵蚀量减少;MgO-C材料对CaO-Al<,2>O<,3>熔渣有较强的抗侵蚀性.  相似文献   

7.
为探索水煤浆气化炉炉衬材料的无铬化,以SiC颗料、MgAl_2O_4细粉、α-Al_2O_3微粉和MgO细粉为原料,在埋碳气氛下于1 650℃保温5 h烧成制备了SiC-MgAl_2O_4坩埚试样,并采用静态坩埚法在埋碳气氛下进行了1 500℃保温1 h的煤熔渣侵蚀试验,以研究高温煤熔渣对试样的侵蚀行为。结果表明:1) SiC-MgAl_2O_4材料经高温煤熔渣侵蚀后,煤熔渣沿着MgAl_2O_4基质渗入材料内部,产生明显裂纹; 2)煤熔渣中的Fe元素在试验条件下与材料中的SiC发生氧化还原反应,在试样表面形成金属Fe,SiC被氧化形成的SiO_2向渣中溶解,提高了熔渣黏度,从而抑制熔渣的进一步渗透; 3)煤熔渣对SiC-MgAl_2O_4材料的侵蚀机制主要包括向MgAl_2O_4基质的渗透和对SiC颗粒的氧化两个方面。  相似文献   

8.
借助SEM、EDS、XRD等分析手段,观察和分析了用后中间包镁质喷涂料的显微结构,研究了镁质喷涂料的侵蚀机理。结果表明:在研究条件下,以烧结镁砂为主要原料的镁质喷涂料基质中低熔物与渗入的熔渣中的Al、Si、Ca、Fe反应生成复杂的钙铝铁硅酸盐,形成粘度适中的液相向原质层渗透,在使用温度梯度下形成一层致密层,阻止渣往涂料深处进一步渗透,提高了材料的抗侵蚀性能,实现涂料的长寿命;钢渣中的Fe、Mn、Si与MgO形成橄榄石固溶体,对涂料的抗侵蚀性能有一定贡献。  相似文献   

9.
利用感应熔炼炉研究了低碱度钢包精炼渣对钢包渣线部位常用的3种MgO基耐火材料(镁碳、镁碳化硅、镁尖晶石)的侵蚀,同时利用黏度试验研究了耐火材料的基质组分与熔渣混合后形成新渣相的黏度变化。研究结果表明:1)低碱度炉渣在与MgO基耐火材料中的MgO接触过程中会形成低熔点物相钙镁橄榄石(CMS),与镁铝尖晶石接触会促进钙铝黄长石(C2AS)的生成而使渣黏度增加,处于熔渣区域的SiC被氧化成SiO2而提高渣的黏度。2)熔渣对耐火材料的侵蚀程度取决于熔渣和耐火材料之间的润湿情况,熔渣黏度的增加只是在一定程度上缓解了熔渣对耐火材料的侵蚀,反应层的耐火材料在钢水和熔渣的冲刷下仍会流失到熔渣中去。  相似文献   

10.
以方镁石-尖晶石微孔陶瓷、电熔镁砂为骨料,以电熔镁砂细粉、鳞片石墨、金属铝粉为基质材料,以酚醛树脂为结合剂制备了含微孔陶瓷骨料的镁尖晶石碳试样.采用感应炉浸渍法对试样进行了抗渣试验,并对渣蚀后的试样进行了SEM和EDAX分析.结果发现:熔渣和熔钢冲刷是损毁的主要原因,熔损并不显著.显微结构分析表明,在侵蚀层和原质层之间可以发现MgO致密层的形成,MgO致密层的形成可抑制渣对试样进一步的侵蚀和渗透.渣对MSO颗粒的侵蚀主要是FeO和MnO等在方镁石中的固溶,导致MgO颗粒出现结构剥落;方镁石-尖晶石微孔陶瓷骨料的蚀损主要是尖晶石被渣中的CaO和SiO2所侵蚀,而渣对微孔骨料渗透并不严重.  相似文献   

11.
Formation of a dense layer on corroded interface to suppress corrosion is always desired, but it is controlled by numerous environmental conditions. In this work, corroded microstructures of MgO/Al2O3-SiC-C refractories in metal bath area of ladle furnace were investigated after industrial trails. A liquid-phase isolation layer in which MgO islands and liquid phases was established on the corroded interface of refractories with 6 wt% coarse/fine SiC-additive. The formed isolation layer against steel/slag attacks led to an approximate 30% improvement in corrosion resistance than that of refractory with 3 wt% fine SiC-additive. More importantly, the liquid-phase isolation layer blocked the direct mass transfer between molten steel and refractories while it decreased exogenous pollution from refractories. SiC-additive affected the formation process of isolation layer by controlling the generation/migration of Mg(g) on refractory' surface. A further formation mechanism of liquid-phase isolation layer was discussed in detail and role of SiC was elucidated.  相似文献   

12.
The wetting and spreading phenomena of molten slag were observed in situ on dense MgO and MgO-C refractory substrates. Parameters associated with wetting and spreading of molten slag, such as the contact angle, droplet height, diameter, and volume, were measured and calculated. The microstructure and chemical composition of the corroded dense MgO and MgO-C refractory were studied using SEM and EDS analysis. The droplet volume of molten slag on dense MgO declined faster than that on MgO-C refractory during the first 90?s of the testing period, whereas the droplet volume exhibited little difference across the two cases after 150?s. Molten slag penetrated the dense MgO and MgO-C refractory through grain boundaries and the channels which were formed by the dissolution of MgO. Besides, the slag also penetrated into the MgO-C refractory through the pores and channels formed by the redox reaction between slag and carbon, and a reaction product (Fe) was found at the interface. The dissolution of MgO and redox reactions changed the wetting process and increased corrosion of the MgO-C refractory.  相似文献   

13.
Electromagnetic field (EMF) would speed up the corrosion of low carbon MgOC refractories. Its influence mechanism will be investigated in this paper. The slag-resistance experiments of low carbon MgOC refractories were carried out under the condition of an induction furnace and a resistance furnace, respectively. Low carbon MgOC refractories with carbon of 6% (in mass) and a slag with the basicity (CaO/SiO2) of around 0.87 were used in the experiments. The slag line of MgOC refractories corroded by the slag under the different conditions were analyzed by X-ray diffractometer (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The results show that in the induction furnace with an electromagnetic field (EMF), no MgO dense layer exists in the interface. However, MgO dense layer could be formed in the interface without any EMF. The formation mechanism of MgO dense layer indicates that the EMF could enhance the solution of MgO and power of Mg (g) discharge. As a result, EMF restrains the formation of MgO dense layer.  相似文献   

14.
李新海  李晶 《硅酸盐学报》1993,21(5):482-486
采用坩埚法,借助自行设计的高温X射线透射影视设备,通过X射线照像主电视观察,研究了烧结MgO材料在炉渣(SiO2-FeO-CaO)与冰铜(FeS-Cu2S)界面区局部优先侵蚀过程。发现:MgO材料在渣中FeO形成致密的(Fe,Mg)O层,紧邻(Fe,Mg)O层形成渣膜,而界面张力流的存在使渣膜产生运动,促进渣膜层中MgO的传质过程,加速MgO材料的侵蚀,从而引起MgO材料在渣-冰铜界面区局部优先侵  相似文献   

15.
《Ceramics International》2023,49(10):15122-15132
The slag resistance of MgO–SiC–C (MSC) refractories should be improved because of the mismatch in the thermal expansion coefficient between the aggregates and matrix, as well as the defects caused by the affinity between periclase and slag. In this study, MgO–Mg2SiO4–SiC–C (MMSC) refractories were prepared using porous multiphase MgO–Mg2SiO4 (M-M2S) aggregates to replace dense fused magnesia aggregates. Compared to MSC, the slag penetration index of MMSC decreased by 43.5%. The structure of the porous aggregates increased the surface roughness, and the multiphase composition of the aggregates decreased the mismatch of the thermal expansion coefficient with the matrix, thus reducing debonding between the aggregates and matrix. The aggregates and matrix in the MMSC formed an interlocking structure, which bound them more tightly to improve the slag resistance. The slag viscosity at different depths from the initial slag/refractory interface was calculated using the Ribond model. The M-M2S aggregates increased SixOyz− in the slag, which increased the slag polymerization and slag viscosity. The aggregates and matrix in the MMSC reacted with the slag to form high melting point phases, which reduced the channel of the slag. In addition, the penetration depth and velocity derived from the Washburn Equation were modified for the CaO–SiO2–Al2O3–MgO–FeO slag and magnesia based refractory to accurately evaluate slag penetration.  相似文献   

16.
A novel Al_2O_3-based refractory aggregate with closed-pore structure was fabricated utilizing superplasticity with submicro-sized Al_2O_3 and MgO as raw materials,and SiC as a high temperature pore-forming agent.The effect of MgO on porosity,phase composition and microstructure of the refractory aggregate has been investigated. For comparison,the common Al_2O_3-based refractory aggregates and porous ones with open-pore structure were also prepared. The results indicate that the closed porosity of Al_2O_3-based refractory aggregate increases as the content of MgO increases. When the content of MgO is 15 mass%,the closed and apparent porosities are 14. 5% and 1. 1%,respectively. The main phase compositions are Al_2O_3 and MgAl_2O_4. The formation mechanism of closed pores is that the fine-crystallinegrain Al_2O_3 ceramic possesses superplastic deformation ability after adding MgO at high temperatures. When SiC powder is added to the Al_2O_3 ceramic,the generated gases by the reaction of SiC at the sintering temperature can provide a pressure to make grain boundaries slide. Then,the gases are enclosed by crystalline grains to form the closed pores. The slag corrosion resistance of the fabricated closed-pore Al_2O_3-based refractory aggregate is better than the common refractory aggregate and porous ones.  相似文献   

17.
A new type of low‐carbon magnesia carbon refractory (LCMCR) substituting for MgO‐Cr2O3 refractory was successfully used in vacuum oxygen decarburization (VOD) ladle slagline, and the composition and microstructure of the used LCMCR were investigated. The results indicated that the decarburizing reaction (MgO‐C reaction) in the LCMCR under the VOD refining condition (high temperature, low pressure) was inhibited due to the low carbon content in the MgO‐C refractory and the dense layer formed between slag and original layer. The dense layer prevented the penetration of the external O2 into the LCMCR inside because of the lower permeability of this layer, and thus, the direct burnout of the C in the LCMCR was substantially restrained. On the other hand, the large size crystal and the ultra‐low inclusions (SiO2 and Fe2O3) content of the fused magnesia in the LCMCR made the magnesia more slag resistance, because the grain boundary in magnesia had higher slag penetration resistance and the contact area between the slag and the magnesia was reduced. The two aspects of the inhibited decarburizing reaction and the high quality magnesia synthetically contributed to the high slag resistance of the LCMCR.  相似文献   

18.
《Ceramics International》2022,48(24):36629-36637
The adhesion of Na2CO3 slag to the surface of refractories in an alkali recovery furnace can cause corrosion and spall. Magnesia refractories can be used as linings in alkali recovery furnaces owing to their strong corrosion resistance to alkali slag. However, the permeability resistance of magnesia refractories is relatively poor. Hence, the interface and corrosion behaviours of slag cladding on magnesia refractories were studied using sessile drop and static crucible tests. The experimental results showed that an increase in the heating rate positively affected the cladding of the molten column on the refractory surface. The microstructure, element changes, and chemical composition changes of the corroded refractories were analysed using SEM-EDS and XRD. Thermodynamic simulation of the reaction between the slag and refractory was performed using Factsage 7.3. The results indicate that the generated forsterite filled the pores of the magnesia refractories. The microstructure of dense slag-refractory interface layer was formed, which prevented the infiltration of slag phases and alleviated the corrosion of refractories by the slag.  相似文献   

19.
《Ceramics International》2020,46(6):7517-7522
In order to clarify the effect of graphite content on the corrosion behavior of MgO–C refractories immersed in MnO-rich slag, the MgO–C refractory samples bearing 5 wt%, 10 wt% and 15 wt% graphite were prepared, and exposed in the slag composed of 40 wt% CaO, 40 wt% SiO2 and 20 wt% MnO. The results show that metallic Mn particles and (Mg,Mn)O solid solution are formed at the slag/refractories interface. Whereas, no dense layer is formed by (Mg,Mn)O solid solution at the interface. The decrease in MnO content of slag is mainly attributed to the reaction with graphite to form liquid Mn. The graphite is found in the slag, and dissolved in the form of oxidation. The poor wetting limits the contact area of graphite and slag, reducing graphite oxidation and decarburized area. The graphite does not become the passage for slag to penetrate into the refractories due to the oxidation. On the contrary, the dissolution of MgO in slag is faster than graphite, thus is mainly responsible for the degradation of refractories. As a result, MnO and MgO contents change less in the slag contacted with the refractories bearing higher graphite content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号