首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研究了一种新型P-Br阻燃剂-1,3,5-三(5,5-二溴甲基-1,3-二氧杂己内磷酰氧基)苯(FR)的含量对环氧树脂(EP)的阻燃性能和力学性能的影响。结果表明,当阻燃剂FR的含量为15 %(质量分数,下同)时,与纯EP相比,阻燃EP的极限氧指数从25.0 %提高到29.3 %,垂直燃烧通过UL 94 V-0级,火势增长指数从3.63 kW/(m2·s1)下降到0.77 kW/(m2·s1),放热指数从1.89 MJ/m2下降到1.34 MJ/m2,600 ℃残炭率从18.54 %升至29.02 %,呈现良好的阻燃效果,但力学性能有所下降,拉伸强度从62.04 MPa下降到39.81 MPa,冲击强度从13.46 kJ/m2 降到10.13 kJ/m2。  相似文献   

2.
本文以微胶囊红磷为主要阻燃剂,纳米SiO2为增韧剂,采用共混熔融法制备阻燃型聚酯纤维样条,并研究阻燃剂及增韧剂用量对聚酯的阻燃性能和力学性能的影响。结果表明,微胶囊红磷能明显增强聚酯纤维的阻燃性能,纳米SiO2的加入能改善聚酯纤维样条的力学性能;微胶囊红磷含量为5%时,聚酯纤维样条的极限氧指数(LOI)值为33,拉伸强度为17.99MPa,弯曲强度为26.75MPa,冲击强度为1.97kJ/m2,材料力学性能下降严重;微胶囊红磷含量为3%、纳米SiO2含量为2%时,聚酯纤维样条的LOI值为29,拉伸强度为35.51N/mm2,弯曲强度为31.54MPa,冲击强度为2.03kJ/m2,材料的综合性能最佳。  相似文献   

3.
张瑾  刘大光  谭润升  王宏  季璐 《辽宁化工》2023,(10):1422-1424
以FR2025为阻燃剂、TF1645为抗滴落剂对聚碳酸酯进行阻燃改性,研究了二者用量对聚碳酸酯板材(2mm)阻燃性能、光学性能以及力学性能的影响。结果表明:磺酸盐阻燃剂FR2025与聚四氟乙烯抗滴落剂TF1645复配使用时,板材综合性能良好,较低的添加量即可达到阻燃抗滴落要求。当FR2025添加量为0.08%、TF1645添加量为0.4%时,聚碳酸酯板材的阻燃效果最优,对板材光学性能和力学性能影响较小,透光率为88.3%,雾度为1.12%,拉伸强度为68MPa,拉伸弹性模量为2385 MPa,缺口冲击强度67.8 kJ·m-2,弯曲强度为116.8 MPa。  相似文献   

4.
吕强 《工程塑料应用》2021,49(1):30-33,39
以玻纤增强聚丙烯(GFPP)为基体,加入无卤阻燃剂FR–1420、永久抗静电剂P–22制备复合材料,考察了体系的阻燃性能、永久抗静电性能、力学性能和热稳定性能。结果表明,FR–1420单独添加20%时,可使GFPP阻燃等级达到UL–94 V0级;P–22单独添加20%,可使GFPP表面电阻率下降至1.4×108Ω。当阻燃剂与抗静电复合使用,FR–1420添加量为25%,P–22添加量为20%时,复合材料阻燃等级达到V0级,表面电阻达率到1.5×108Ω,且抗静电性能持久稳定;复合材料力学性能仍维持在较高的水平,拉伸强度为37 MPa,缺口冲击强度为11.2 kJ/m2;复合材料初始分解温度大幅度降低,由纯样的423℃降低至330℃。  相似文献   

5.
采用9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)和DOPO型含磷环氧树脂(DOPO–EP)对双酚A型EP进行阻燃改性,研究了不同磷含量下两种阻燃剂对EP的改性效果。结果表明,随磷含量增加,EP/DOPO与EP/DOPO–EP体系的玻璃化转变温度均降低,但EP/DOPO–EP体系的降幅较小;DOPO与DOPO–EP均能有效地提高EP的阻燃性能,但DOPO–EP的阻燃效果更佳;EP/DOPO–EP体系的综合力学性能高于EP/DOPO体系。当磷质量分数分别为2.5%和1.5%时,EP/DOPO与EP/DOPO–EP体系的垂直燃烧等级均达到UL 94 V–0级,极限氧指数分别为32%和33%。EP/DOPO体系在磷质量分数为2.5%时的残炭率(700℃)为12.27%,较纯EP提高了17.3%,但其拉伸性能、冲击性能和弯曲强度均大幅下降。而EP/DOPO–EP体系在磷质量分数为1.5%时的残炭率(700℃)为20.07%,较纯EP提高了91.9%,其断裂伸长率和弯曲强度分别为2.32%和92.69 MPa,较纯EP分别提高了13.73%和24.27%,拉伸强度和缺口冲击强度分别为35.34 MPa和1.85 kJ/m2,较纯EP仅下降了1.56%和1.07%,综合性能最佳。  相似文献   

6.
为了提高甲基乙烯基加成硫化型硅橡胶(VMQ)的阻燃性能,向基体中加入了六苯氧基环三磷腈(HPCP)和三聚氰胺(MEL)阻燃剂,研究了VMQ/HPCP/MEL阻燃复合材料的阻燃性能、燃烧行为、热稳定性能和力学性能。结果表明,HPCP和MEL对VMQ具有协同阻燃作用,当HPCP与MEL的质量比为1/2时,VMQ/HPCP/MEL阻燃复合材料的氧指数最高为30.8%,UL-94等级达到V-0级;燃烧时间从520 s缩短到415 s,总热释放量从53.53 MJ/m~2降低到45.80 MJ/m~2,燃烧后得到的残炭致密;材料的热稳定性比单独添加HPCP和MEL时更好,力学性能最好,拉伸强度为1.69 MPa,扯断伸长率为262%。  相似文献   

7.
研究了无卤、含磷添加型阻燃剂红磷、包覆红磷、聚磷酸铵、包覆聚磷酸铵、含磷膨胀型阻燃剂PNP、三聚氰胺焦磷酸盐等6种阻燃剂对硬质聚氨酯泡沫塑料阻燃及力学性能的影响。结果表明,随着阻燃剂添加量的增加,阻燃硬质聚氨酯泡沫塑料的极限氧指数(LOI)总体上呈升高趋势,拉伸强度呈先上升后下降趋势,而冲击强度呈逐渐下降趋势。包覆红磷和包覆聚磷酸铵阻燃材料的阻燃性能和力学性能均明显好于普通红磷和聚磷酸铵阻燃剂,PNP阻燃材料具有最佳的阻燃性能和力学性能,当PNP添加量为25%时,阻燃材料的LOI为29.5%,拉伸强度和冲击强度分别为5.3 MPa和8.7 kJ/m2。  相似文献   

8.
采用锥形量热法研究了聚磷酸铵(APP)、硼酸及由这两者组成的复配阻燃剂对环氧树脂(EP)复合材料燃烧性能的影响.结果表明:APP可使EP复合材料燃烧时的热释放量和烟释放量大大降低,到495s时累积热释放量为27.3MJ/m2,烟产生速率为2243m2/m2,与未阻燃EP复合材料相比分别下降了37%和49%,阻燃抑烟效果显著;硼酸推迟EP复合材料热解时间,延缓了烟尘和有毒气体的释放;APP与硼酸之间存在着协同阻燃作用,APP在燃烧前期催化EP成炭,硼酸降低燃烧后期的累积热释放量.  相似文献   

9.
将无机阻燃剂聚磷酸铵(APP)和有机阻燃剂磷酸三氯乙酯(TCEP)复配,制备了TCEP/APP阻燃聚氨酯泡沫塑料,并对其耐燃性、力学性能和热稳定性进行了分析。结果表明:阻燃剂添加量为30%时,当m(TCEP)∶m(APP)=1∶3时,TCEP/APP的阻燃效果最佳,此时聚氨酯泡沫塑料的极限氧指数为25.7%,且残炭率增加至37.2%,聚氨酯泡沫塑料的压缩强度和冲击强度分别为0.158 MPa和0.109 kJ/m~2。  相似文献   

10.
新型磷-氮系复配阻燃剂在聚丙烯中的应用   总被引:1,自引:0,他引:1  
采用一种新型磷-氮系阻燃剂与聚磷酸铵(APP)复配成膨胀型阻燃剂,对聚丙烯(PP)进行阻燃改性。研究了阻燃PP的阻燃性能、热分解过程及力学性能。结果表明:当复配阻燃剂添加量为30%时,阻燃改性PP的氧指数和垂直燃烧等级分别达到32.3%和UL94 V-0级,拉伸强度为37.4 MPa,缺口冲击强度为39.5 kJ/m2,并且具有很好的热稳定性。  相似文献   

11.
氨基硅油对氢氧化镁及有机蒙脱土阻燃LLDPE的影响   总被引:4,自引:1,他引:3  
用氢氧化镁(MH)和有机蒙脱土(OMMT)作为阻燃剂制备了阻燃线型低密度聚乙烯(LLDPE),研究了氨基硅油(ASO)对阻燃LLDPE力学性能及阻燃性能的影响。通过锥形量热仪(CONE)和热失重分析(TGA)对材料进行了表征。结果表明:ASO提高了阻燃性能和抑烟效果。当ASO用量为2%时,阻燃LLDPE的热释放速率峰值(pHRR)和平均热释放速率(mHRR)分别降低到169.6kW/m2和86.7kW/m2,比加入ASO前下降了20.5%和9.7%;烟产生速率峰值(pSPR)和总生烟量(TSP)分别降低到0.017m2/s和0.4m2。此外,ASO提高了材料的断裂伸长率和冲击强度。  相似文献   

12.
分别考察和对比了四溴双酚A/焦锑酸钠、四溴双酚A/焦锑酸钠/磷酸三苯酯(TPP)阻燃体系、溴代聚碳酸酯齐聚物阻燃剂和磺酸盐类阻燃剂对透明聚碳酸酯(PC)的光学性能和力学性能的影响。结果表明,选用四溴双酚A/焦锑酸钠(用量5.0/2.0份)阻燃体系,阻燃透明聚碳酸酯(PC)的性价比高,阻燃级达到UL94V-0级,极限氧指数32%,缺口冲击强度26.5kJ/m2,拉伸强度50.2MPa,透光率80%以上。  相似文献   

13.
以蒙脱土(MMT)作为EP(环氧树脂)的改性剂制备EP/MMT纳米复合材料。考察了MMT含量对EP/MMT体系的凝胶时间、黏度和力学性能等影响。结果表明:MMT的加入明显缩短了EP体系的凝胶时间,并显著缩短了EP体系达到高黏度的时间;当w(MMT)=4%时,EP/MMT纳米复合材料的力学性能相对最好,其浇铸体的拉伸强度、弯曲强度和冲击强度分别为85 MPa、140 MPa和35 kJ/m2,其复合材料的拉伸强度和弯曲强度分别为160 MPa和200 MPa。  相似文献   

14.
以预先合成的密胺甲醛树脂预聚物为壳,通过原位聚合法制备了微胶囊红磷,采用扫描电镜观察到微胶囊红磷颗粒表面包覆一层网状的壳材料。研究了红磷和微胶囊红磷阻燃环氧树脂(EP)的耐热性能、阻燃性能及力学性能。结果表明,微胶囊红磷阻燃EP的耐热性和质量保持率明显提高,添加质量分数10%的微胶囊红磷的阻燃EP的阻燃性能达到UL 94 V–0级,其阻燃性能优于红磷阻燃EP。微胶囊红磷阻燃EP的拉伸强度为30.3 MPa,冲击强度为11.4 kJ/m2,分别比相同用量红磷阻燃EP提高了6.0%和21.3%,其冲击强度比纯EP提高了17.5%,表明微胶囊红磷与基体树脂间的相容性大大改善,可显著提高材料的韧性。  相似文献   

15.
采用三步插层取代法制备了硫脲插层高岭土插层复合物(TU-Kaol),通过熔融共混法将TU-Kaol添加到聚丙烯(PP)中,通过锥形量热和万能试验机测试PP/TU-Kaol复合材料的阻燃性能和力学性能。结果表明,当TU-Kaol含量为1.5 %(质量分数,下同)时,PP/TU-Kaol 复合材料的最大热释放速率从纯PP的1 474 kW/m2下降至1 100 kW/m2;拉伸强度从纯PP的35.3 MPa提高至39.8 MPa,表明TU?Kaol对PP的阻燃和力学性能具有显著效果。  相似文献   

16.
房孝栋  吴明生 《橡胶工业》2023,70(3):0182-0188
以三元乙丙橡胶(EPDM)为主体材料,分别采用5种无卤氮磷系阻燃剂FR-680,206,AT-903C,FR35RP和FR21RP(用量为110份)制备阻燃EPDM胶料,考察5种无卤氮磷系阻燃剂对EPDM胶料性能的影响。结果表明:5种无卤氮磷系阻燃剂均能明显提高EPDM硫化胶的阻燃性能,EPDM硫化胶的极限氧指数均在30%以上;填充阻燃剂FR-680和FR35RP的EPDM硫化胶具有优异的物理性能,但其阻燃性能相对较差;填充阻燃剂FR21RP的EPDM硫化胶的拉伸强度为7.0 MPa,极限氧指数为39%,总热释放量最大值为83.43 MJ·m-2,总烟释放量最小值为462.42 m2·m-2,其综合性能最佳。  相似文献   

17.
邹业成  胡志勇 《塑料工业》2013,41(4):99-101
采用有机磺酸盐阻燃剂阻燃改性聚碳酸酯(PC),研究了有机磺酸盐阻燃剂用量对PC复合体系的阻燃性能及其力学性能的影响。结果显示:当添加量低于0.1%时,随着有机磺酸盐阻燃剂添加量的增加,PC复合体系的极限氧指数迅速增加,由26%增加至33.8%,体系的拉伸强度和弯曲强度几乎不变,缺口冲击强度略有下降;当添加量超过0.1%后,极限氧指数增加缓慢,由33.8%增加至34.5%,悬臂梁缺口冲击强度却大幅下降,由11.19 kJ/m2迅速降至3.6 kJ/m2,而且体系透明性受到影响。  相似文献   

18.
以弹性体为增韧剂,聚苯乙烯接枝马来酸酐(PS-g-MAH)为增容剂,聚磷酸铵、季戊四醇膨胀阻燃体系复配微胶囊化红磷为阻燃剂,制备了聚苯乙烯/高密度聚乙烯(PS/HDPE)无卤阻燃复合材料,考察了PS与HDPE配比、弹性体种类及用量、PS-g-MAH接枝率及用量对复合材料力学性能及微观结构的影响。结果表明:当PS:HDPE=75:25时,复合材料的冲击强度提高至1.41kJ/m2;SEBS与SBS配比为1:1.7时,可使PS/HDPE无卤阻燃复合材料的拉伸强度增至21.3MPa,冲击强度达到2.81kJ/m2;添加12份接枝率为3.7%的PS-g-MAH后,PS/HDPE/SEBS/SBS无卤阻燃复合材料的冲击强度达到了4.89kJ/m2。  相似文献   

19.
微胶囊聚磷酸铵的制备及阻燃环氧树脂的性能研究   总被引:1,自引:0,他引:1  
采用三聚氰胺甲醛树脂预聚物通过原位聚合法制备了微胶囊聚磷酸铵阻燃剂(MAPP),利用扫描电镜观察到MAPP颗粒表面包覆了一层树脂。采用热重分析法、垂直燃烧法和氧指数法研究了聚磷酸铵(APP)和MAPP阻燃环氧树脂材料的热性能及阻燃性能。结果表明:与APP相比,MAPP阻燃环氧树脂的最大失质量温度、残炭量以及阻燃性能均显著提高。添加10%APP或MAPP的环氧树脂材料的氧指数均大于27.0%,阻燃性能均达到UL 94 V-0级,且MAPP样条燃烧后可形成膨胀炭层。相比于APP,MAPP阻燃材料的力学强度均有所改善,当阻燃剂填充10%时材料的拉伸强度从32.6 MPa提高到35.7 MPa,冲击强度从10.8 kJ/m2提高到11.6 kJ/m2,均高于纯环氧树脂材料的力学强度。  相似文献   

20.
纳米SiO_2对环氧树脂胶粘剂的改性机制及应用研究   总被引:1,自引:0,他引:1  
环氧树脂(EP)具有粘接力强、电绝缘性好、稳定性高和固化收缩率小等优点,但由于纯EP固化后呈三维交联网状结构,导致其内应力大、质脆和抗冲击韧性较差。采用共混法将纳米SiO2(nano-SiO2)加入到EP基体树脂中,制备nano-SiO2/EP复合材料。结果表明:复合材料的剪切强度由16.66 MPa升至18.01 MPa,冲击强度从15.40 kJ/m2升至33.68 kJ/m2,弯曲强度从70.50 MPa升至85.94 MPa,最终nano-SiO2/EP复合材料体系的韧性比不含nano-SiO2体系提高了82.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号