首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2023,49(19):31163-31174
This study examined the effects of rare-earth (RE) elements such as Sc, Y, Ce, and Yb on the densification and oxidation of SiC. After adding binary or ternary RE nitrates in liquid form to β-SiC, hot pressing was performed at 1750 °C for 2 h under 20 MPa. RE nitrate was transformed into RE oxide and formed a liquid phase during sintering by a reaction with SiO2 present on the SiC surface, where the total amount of RE oxide was fixed at 5 wt%. RE-based silicate melts acted as sintering additives without decomposing SiC at high sintering temperatures. SiC containing Sc–Y as an additive showed a much higher density (≥ 99%) than SiC containing the conventional Al–Y additive (∼95%). The multicomponent RE additive with a melting point (Tm) < 1550 °C had a relatively lower density than that with a higher Tm, owing to the evaporation of the additive at 1750 °C. The density of SiC also depended on the additive composition. The oxidation test, conducted at 1300 °C for up to 168 h in air, exhibited a parabolic weight gain. The SiC sample sintered with the Sc–Yb additive achieved the highest resistance of 3.23 × 10−5 mg/cm4·s.  相似文献   

2.
To provide a basis for the high-temperature oxidation of ultra-high temperature ceramics (UHTCs), the oxidation behavior of Zr3[Al(Si)]4C6 and a novel Zr3[Al(Si)]4C6-ZrB2-SiC composite at 1500 °C were investigated for the first time. From the calculation results, the oxidation kinetics of the two specimens follow the oxidation dynamic parabolic law. Zr3[Al(Si)]4C6 exhibited a thinner oxide scale and lower oxidation rate than those of the composite under the same conditions. The oxide scale of Zr3[Al(Si)]4C6 exhibited a two-layer structure, while that of the composite exhibited a three-layer structure. Owing to the volatilization of B2O3 and the active oxidation of SiC, a porous oxide layer formed in the oxide scale of the composite, resulting in the degradation of its oxidation performance. Furthermore, the cracks and defects in the oxide scale of the composite indicate that the reliability of the oxide scale was poor. The results support the service temperature of the obtained ceramics.  相似文献   

3.
SiC ceramic coating, for prevention of C/C composites against oxidation, was prepared by pressure-less reactive sintering to investigate the oxidation behaviour in an oxidising environment containing water vapour at 1773 K. The experimental results demonstrated that the oxidation behaviour of porous SiC ceramics could be divided into two stages, following the parabolic model, which was attributed to the variation in the contact area involved in the oxidation reactions. During the entire oxidation process, water vapour could accelerate the oxidation of the SiC ceramics, according to the weight change. By first-principle calculations, the accelerated oxidation rate of the SiC ceramics was attributed to weakened Si–O and Al–O bonds in the formed glassy scale, which were caused by hydroxide radicals from the water. Atomic thermal motions at high temperature could lead to the breakage of the network structure, promoting the diffusion and solution of oxidising gases. When the as-prepared SiC ceramics were applied as anti-oxidative coatings for the C/C composites, the SiC ceramic coating and C/C matrix could be sealed and protected faster per unit time, because water vapour was beneficial to the formation of a glassy layer. The weight loss of the C/C matrix could be attributed to unsealed microcracks inside the SiC coating in the initial stage.  相似文献   

4.
The Si/B/C/N/H polymer T2(1), [B(C2H4Si(CH3)NH)3]n, was reacted with different amounts of H3Al·NMe3 to produce three organometallic precursors for Si/B/C/N/Al ceramics. These precursors were transformed into ceramic materials by thermolysis at 1400 °C. The ceramic yield varied from 63% for the Al-poor polymer (3.6 wt.% Al) to 71% for the Al-rich precursor (9.2 wt.% Al). The as-thermolysed ceramics contained nano-sized SiC crystals. Heat treatment at 1800 °C led to the formation of a microstructure composed of crystalline SiC, Si3N4, AlN(+SiC) and a BNCx phase. At 2000 °C, nitrogen-containing phases (partly) decomposed in a nitrogen or argon atmosphere. The high temperature stability was not clearly related to the aluminium concentration within the samples. The oxidation behaviour was analysed at 1100, 1300, and 1500 °C. The addition of aluminium significantly improved the oxide scale quality with respect to adhesion, cracking and bubble formation compared to Al-free Si(/B)/C/N ceramics. Scale growth rates on Si/B/C/N/Al ceramics at 1500 °C were comparable with CVD–SiC and CVD–Si3N4, which makes these materials promising candidates for high-temperature applications in oxidizing environments.  相似文献   

5.
《Ceramics International》2020,46(17):27150-27157
The oxidation behaviors of a ZrB2–SiC–La2O3/SiC dual-layer coating on siliconized graphite at 1800 °C under low air pressures (50, 5 and 0.5 kPa) were investigated. The results showed that with the decrease of air pressure, the oxidation kinetics of the coated samples changed from parabolic weight gain to linear weight loss. A protective oxide scale consisted of ZrO2 and SiO2 with La dispersed was formed on the coating surface after oxidation in 50 kPa air. The oxide scale formed in 5 kPa air was full of bubbles. Only porous ZrO2 layer was left on the coating surface after oxidation in 0.5 kPa air. At 1800 °C, the active oxidation of SiC occurred and gaseous SiO formed at the coating/oxide interface. The surface volatilization of SiO became severe with the decrease of air pressure, resulting in the presence of non-protective oxide scale.  相似文献   

6.
《Ceramics International》2022,48(22):32804-32816
Cansas-III SiC fibers were exposed in argon, air and wet oxygen (12%H2O+8%O2+80%Ar) atmospheres for 1 h at 1000–1500 °C. The pristine fiber consisted of β-SiC, free carbon and SiCxOy phases. After exposure in air and wet oxygen, an amorphous SiO2 layer with embedding α-cristobalite crystals formed, while stacking faults were generated in the SiC core to release the residual stress. With the increasing oxidation temperature, lots of pores formed in the oxide layer, accompanied with the thickening, cracking and spallation of oxide layer. The average tensile strength decreased with the exposure temperature increasing and the exposure atmosphere deteriorating (argon→air→wet oxygen). After exposure at 1400 °C in argon and air, the fiber strength retention rates were 84% and 70%, respectively. However, after exposure at 1300 °C in wet oxygen, the strength retention rate was only 51%, indicating the accelerating oxidation and severe strength degradation of fibers.  相似文献   

7.
Oxidation behavior of HfSiCNO ceramics for Hf/Si ratio of 0.09 at 1400°C–1600°C in ambient air is reported. Quantitative X‐ray analysis of oxidized powders shows crystalli‐zation of the amorphous phase into tetragonal hafnia, hafnon, and cristobalite (carbides, seen in inert atmosphere heat treatments are absent). Cross‐sectional SEM shows the oxide overgrowth on the particles to contain precipitates of hafnia/hafnon, while the interior of the particles is decorated with nanoscale grains of hafnia in a necklace‐like formation. The oxidation kinetics of these materials, determined both from weight‐change measurements and from direct observation of oxide overgrowth, are shown to be comparable to the oxidation of SiC single crystals. Oxidation of SiC–SiC minicomposites (straight fiber bundles infiltrated with a SiC matrix), coated with thin films of HfSiCNO prepared by dip‐coating was studied. The overgrowth thicknesses for oxidation time of 1000 h at 1600°C are compared for uncoated, SiCN(O)‐coated, and HfSiCNO‐coated minicomposites.  相似文献   

8.
Liquid preceramic poly(silylacetylene)siloxane resin was synthesized via a two-step protocol including organometallic condensation and hydrolysis reactions. The preceramic resin was well soluble in acetone, toluene, and tetrahydrofuran (THF), etc. By thermal cure at 180–250 °C a hard monolithic solid was formed through radical polymerization of secondary ethynyl groups. The poly(silylacetylene)siloxane resin was processed easily to various nonporous shapes to silicon carbide (SiC) and silicon oxycarbide (SiCO). SiCO ceramic was obtained at a yield of >75% by pressureless pyrolysis at 900–1200 °C; while SiC ceramic was obtained at 1500 °C at a yield of ≈67%. The molar ratio of Si/C in the SiC was found at 1:1.1–1:3, based on ICP-MS elemental analysis. X-ray diffraction (XRD) results revealed the typical β-SiC structure in the poly(silylacetylene)siloxane derived SiC ceramics. The SiC ceramics exhibited high thermo-oxidation resistance at elevated temperatures in air atmosphere.  相似文献   

9.
The long-term oxidation resistance of pressureless liquid-phase-sintered (PLPS) α-SiC was investigated as a function of the content of sintering additive (in particular, YAG) at 1500 °C in air. It is shown that, regardless of the vol.% YAG, the oxidation is passive at that high temperature, with a kinetics given by the paralinear-rate law. This is because the oxide scales grow due to oxidation of the SiC grains, but recede due to the formation of a eutectic phase and to the carbothermal reduction of YAG. It is also shown that the oxidation resistance of PLPS SiC decreases markedly with increasing vol.% YAG, an effect that is especially marked above 7.3 vol.% YAG where a change in oxidation behaviour occurs. Thus, while up to 7.3 vol.% YAG the PLPS SiC ceramics gain mass during the entire oxidation process (500 h) because the oxide scales are at least semi-protective, from 11.1 vol.% YAG onwards the PLPS SiC ceramics first gain mass and then lose mass linearly over oxidizing time because the oxide scales are non-protective. Finally, implications for the design of PLPS SiC ceramics that can tolerate prolonged exposures at high temperatures in air are discussed.  相似文献   

10.
The structures that developed as dense ZrB2–SiC ceramics were heated to 1500 °C in air were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction. The oxidation behavior was also studied using thermal gravimetric analysis (TGA). Below 1200 °C, a protective B2O3-rich scale was observed on the surface. At 1200 °C and above, the B2O3 evaporated and the SiO2-rich scale that formed was stable up to at least 1500 °C. Beneath the surface, layers that were rich in zirconium oxide, and from which the silicon carbide had been partially depleted, were observed. The observations were consistent with the oxidation sequence recorded by thermal gravimetric analysis.  相似文献   

11.
The effect of chromium admixture on the processes in the HfB2-SiC ceramic powder system during its pressureless sintering at 1600?°C was studied. It was shown that an increase in chromium content from 0% to 15.5% in the HfB2-SiC ceramic powder mixture leads to a continuous increase in its relative density up to 90%. A transient liquid phase Cr-Si-C-B is formed at 1600?°C, and it promotes intense sintering of HfB2 and SiC powders. The oxidation resistance of HfB2-SiC-Cr ceramics was studied in static air at 1000–1500?°C. It was shown that the oxidation resistance is greatly improved due to a decrease in the porosity of the sintered ceramic system because of chromium additive. The presence of chromium oxide in the formed surface glassy layer can also lead to the increase in the oxidation resistance. These results suggest that chromium can be considered as a promising sintering additive for HfB2-SiC and similar systems.  相似文献   

12.
Nitrogen (N)-doped conductive silicon carbide (SiC) of various electrical resistivity grades can satisfy diverse requirements in engineering applications. To understand the mechanisms that determine the electrical resistivity of N-doped conductive SiC ceramics during the fast spark plasma sintering (SPS) process, SiC ceramics were synthesized using SPS in an N2 atmosphere with SiC powder and traditional Al2O3–Y2O3 additive as raw materials at a sintering temperature of 1850–2000°C for 1–10 min. The electrical resistivity was successfully varied over a wide range of 10−3–101 Ω cm by modifying the sintering conditions. The SPS-SiC ceramics consisted of mainly Y–Al–Si–O–C–N glass phase and N-doped SiC. The Y–Al–Si–O–C–N glass phase decomposed to an Si-rich phase and N-doped YxSiyCz at 2000°C. The Vickers hardness, elastic modulus, and fracture toughness of the SPS-SiC ceramics varied within the ranges of 14.35–25.12 GPa, 310.97–400.12 GPa, and 2.46–5.39 MPa m1/2, respectively. The electrical resistivity of the obtained SPS-SiC ceramics was primarily determined by their carrier mobility.  相似文献   

13.
In this study, porous SiC ceramics with interconnected huge plate-like grains were fabricated from oxidized β-SiC powder with 1 wt% B4C. When the β–α SiC phase transformation occurred at 2100 °C, rapid grain growth of α-SiC consumed the unstable β-SiC matrix resulting in an interconnected network structure with huge plate-like grains. The oxidation of β-SiC powder and the addition of B4C are necessary conditions for rapid grain growth. The observed results are discussed based on thermodynamic considerations. The measured porosity of the specimens sintered at 2100 °C for 30 min was 47% and the mean pore size was 6–7 μm. The strength of the sintered specimen was 45 ± 5 MPa.  相似文献   

14.
In this paper, MoSi2, MoSi2-20?vol% (ZrB2-20?vol% SiC) and MoSi2-40?vol% (ZrB2-20?vol% SiC) ceramics were prepared using pressureless sintering. The oxidation behaviors of these MoSi2-(ZrB2-SiC) ceramics were investigated at 1600?°C for different soaking time of 60, 180 and 300?min, respectively. The oxidation behaviors of the MoSi2-(ZrB2-SiC) ceramics were studied through weight change test, oxide layer thickness measurement, and microstructure analysis. Further investigation of the oxidation behaviors of the MoSi2-(ZrB2-SiC) ceramics was conducted at a higher temperature of 1800?°C for 10?min. The microstructure evolution of the ceramics was also analyzed. It was finally found that the oxidation resistance of MoSi2 was improved by adding ZrB2-SiC additives, and the MoSi2-20?vol% (ZrB2-20?vol% SiC) ceramic exhibited the optimal oxidation resistance behavior at elevated temperatures. From this study, it is believe that it can give some fundamental understanding and promote the engineering application of MoSi2-based ceramics at high temperatures.  相似文献   

15.
《Ceramics International》2016,42(3):4429-4444
SiBCN ceramics were prepared using various volumes of graphene platelets (GPLs) as nanofiller. The effects of the nanofiller on microstructure, and oxidation and thermal shock resistance of as-sintered ceramics were investigated. The phase composition and microstructures were very similar for all investigated ceramics consisting primarily of β-SiC, BNC and small amounts of α-SiC with relatively homogeneously distributed 5–10 nm thick GPLs in the matrix. For SiBCN ceramics incorporating graphene as nanofiller, a porous oxide layer forms at 1500 °C and the oxidation behavior shows a linear kinetics by thickness measurement method. Gas evolution during heating lead to a passive oxidation behavior and weight loss. Graphene reinforced SiBCN ceramics exhibit thermal shock resistance superior to monoliths of the same material. The graphene distributed in SiBCN matrix can dissipate the energy of crack growth and acts as a stopper to cracks. The toughening mechanisms offered by graphene, including pull-out and bridging appear to aid in ameliorating thermal shock effects. Furthermore, the existence of a dense oxide surface layer retards oxygen diffusion into the inner matrix and heals surface pores and cracks, which also contributes to thermal shock resistance.  相似文献   

16.
Carbon–carbon (C–C) composites are ideal for use as aerospace vehicle structural materials; however, they lack high‐temperature oxidation resistance requiring environmental barrier coatings for application. Ultra high‐temperature ceramics (UHTCs) form oxides that inhibit oxygen diffusion at high temperature are candidate thermal protection system materials at temperatures >1600°C. Oxidation protection for C–C composites can be achieved by duplicating the self‐generating oxide chemistry of bulk UHTCs formed by a “composite effect” upon oxidation of ZrB2–SiC composite fillers. Dynamic Nonequilibrium Thermogravimetric Analysis (DNE‐TGA) is used to evaluate oxidation in situ mass changes, isothermally at 1600°C. Pure SiC‐based fillers are ineffective at protecting C–C from oxidation, whereas ZrB2–SiC filled C–C composites retain up to 90% initial mass. B2O3 in SiO2 scale reduces initial viscosity of self‐generating coating, allowing oxide layer to spread across C–C surface, forming a protective oxide layer. Formation of a ZrO2–SiO2 glass‐ceramic coating on C–C composite is believed to be responsible for enhanced oxidation protection. The glass‐ceramic coating compares to bulk monolithic ZrB2–SiC ceramic oxide scale formed during DNE‐TGA where a comparable glass‐ceramic chemistry and surface layer forms, limiting oxygen diffusion.  相似文献   

17.
The oxidation behaviour of AlN–SiC–TiB2 composite materials with 2, 5 and 10 mass% TiB2 and 3 mass% Fe additive obtained using powder metallurgy methods was studied in air up to 1500 °C by thermogravimetry (TG) and differential thermal analysis (DTA) techniques. The phase composition and structure of the oxide films formed were investigated using metallography, X-ray diffraction (XRD) and electron probe microanalysis (EPMA) methods. The two-stage character of non-isothermal oxidation kinetics (heating rate of 15 grade/min) of composites was established. During the first oxidation stage (up to 1350 °C), the formation of α-Al2O3, TiO2 (rutile), B2O3 and β-cristobalite as well as different aluminium borates was found. They formed as a result of interaction between Al2O3 and melted B2O3. During the second stage (above 1350–1400 °C), the mullite 3Al2O3·2SiO2 proved to be a main oxidation product in the scale; besides, some amounts of β-Al2TiO5 were formed as well. The iron additive dissolved in the mullite and aluminium titanate phases that led to the stabilization of a scale formed. It was established that for the three different TiB2 contents, oxidation isotherms follow the parabolic or paralinear rate law. The slope change on the Arrhenius plot given by the dependence of the parabolic rate constants on the reciprocal temperature, suggests a change of the oxidation mechanism in the temperature range of 1300–1350 °C. For example, for the (AlN–SiC)–5% TiB2 composite specimen, the calculated values of apparent activation energy are equal to 285 kJ/mol (1100–1300 °C) and 500 kJ/mol (1350–1550 °C), respectively. The AlN–SiC–TiB2 ceramics developed here can be recommended as high-performance materials for a use in oxidizing medium up to 1450 °C.  相似文献   

18.
《Ceramics International》2022,48(11):15189-15199
Porous SiC ceramics have recently attracted wide attention for their applications in the electrically heatable filter. Further improvement of the thermal and electrical conductivity without sacrificing permeability is a critical parameter for such applications. In the present work, porous SiC/Ti3SiC2 ceramic composites with Ti3SiC2 and micro/nano SiC have been prepared from TiC/Si/α-SiC mixtures at a low sintering temperature (1400 °C). Nano-laminated Ti3SiC2 enhanced the electrical conductivity, while the good thermal conductivity was achieved through in-situ formed nano β-SiC and raw coarse α-SiC in the porous ceramics. Along with the increase of initial α-SiC particle size from 0.76 to 16.13 μm, the permeability, thermal and electrical conductivity improved due to the decreased porosity and increased pore size in porous SiC/Ti3SiC2 ceramics. The results suggested that the decoupling of the electrical conductivity from the thermal conductivity could be tuned by adjusting the initial α-SiC particle size.  相似文献   

19.
《Ceramics International》2023,49(12):20406-20418
Herein, we present the structural evolution of polymer-derived SiOC ceramics with the pyrolysis temperature and the corresponding change in their microwave dielectric properties. The structure of the SiOC ceramics pyrolyzed at a temperature lower than 1200 °C is amorphous, and the corresponding microwave complex permittivity is pretty low; thus, the ceramics exhibit wave transmission properties. The Structural arrangement of free carbon in the SiOC ceramics mainly happens in the temperature range of 1200 °C-1300 °C due to the separation from the Si–O–C network and graphitization, while the structural arrangement of the Si-based matrix mainly occurs in the range of 1300 °C-1400 °C owing to the separation of SiC4 from the Si–O–C network to form nanocrystalline SiC. In pyrolysis temperature range of 1200 °C-1400 °C, the microwave permittivity of SiOC shows negligible change. At a pyrolysis temperature exceeding 1400 °C, the carbothermal reaction of free carbon and the Si–O backbone becomes significant, leading to the formation of crystalline SiC. The as-formed SiC and residual defective carbon improve the polarization loss of SiOC ceramics. In this case, the SiOC ceramics show significantly increased complex permittivity, exhibiting electromagnetic absorption characteristics. These characteristics promote the application of polymer-derived SiOC ceramics to high-temperature electromagnetic absorption materials.  相似文献   

20.
Silica-bonded porous SiC ceramics were fabricated using nano-β-SiC powder-carbon black template compacts by sintering in air at 600°C-1200°C. The intrinsic microstructures of the porous ceramics were characterized by high-resolution transmission electron microscopy, which led to the following observations: (a) a core (SiC)-shell (SiO2) structure was formed, owing to the partial oxidation of nano-SiC particles during sintering; (b) a low-temperature (800°C) β-to-α polytypic phase transformation was observed, owing to the oxidation-induced residual thermal stresses; and (c) non-graphitic carbons were precipitated inside the SiC core, owing to the segregation of C atoms emitted at the strained SiC-SiO2 interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号