首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《塑料》2019,(6)
三嗪成炭剂(CNCH-DA)与多聚磷酸铵(APP)复配成膨胀型阻燃剂(IFR)应用于EVA的阻燃改性,采用氧指数测定仪(LOI)、垂直燃烧测定仪(UL-94)分析了EVA/IFR复合材料的阻燃性能,采用微型量热仪(MCC)分析了其燃烧行为,并采用热重分析仪(TGA)和扫描电子显微镜(SEM)研究了其阻燃机理。结果表明,当APP与CNCH-DA的质量比为2∶1时,EVA/IFR复合材料的LOI值达到27. 7%,并且通过了UL-94 V-0级测试; MCC分析结果表明,添加了IFR后,EVA的燃烧性能下降; TGA分析结果表明,当添加IFR后,EVA/IFR复合材料的热降解推迟,残炭量增加;SEM分析表明,EVA/IFR在燃烧后能形成致密且蓬松的炭层,起到良好的阻燃效果,而EVA/CNCH-DA燃烧后,形成众多不致密的微球。  相似文献   

2.
《塑料科技》2016,(5):83-86
以三嗪成炭发泡剂(CFA)、聚磷酸铵(APP)及二氧化硅(Si O2)复配制备成三嗪膨胀阻燃剂(IFR);将聚苯醚(PPO)以不同的比例取代IFR体系中的CFA成分,制备出新型膨胀阻燃剂,并将其添加到聚丙烯(PP)中制备阻燃PP材料。通过极限氧指数(LOI)和垂直燃烧(UL 94)测试研究了材料的阻燃性能,通过拉伸性能、弯曲性能和冲击性能测试研究了材料的力学性能,通过热重分析(TGA)测试研究了材料的热稳定性及热降解行为。结果表明:当阻燃剂用量为20%、PPO替换CFA的量为20%时,阻燃PP材料能通过UL 94V-0级,氧指数为31.0%;当阻燃剂用量为22%、PPO替换CFA的量为30%时,阻燃PP材料依然能通过UL 94V-0级,氧指数为30.9%,随着PPO替换比例的增加,材料的阻燃性能逐渐下降。力学性能测试结果表明,与单独添加IFR相比,随着PPO替换量的增加,阻燃材料的力学性能略有下降,但下降幅度不大。TGA测试结果表明,当阻燃剂用量为20%、PPO替换20%的CFA时,对材料的热降解行为和成炭性能几乎没有影响。总之,在保证材料阻燃性能的前提下,用适量PPO替换CFA,在一定程度上降低了三嗪膨胀阻燃剂及膨胀阻燃PP材料的成本,从而提高了产品的市场竞争力。  相似文献   

3.
《塑料》2015,(4)
将聚磷酸铵(APP)与可膨胀石墨(EG)进行复配后添加到环氧树脂(EP)中,以间苯二胺(PDA)为固化剂,制备阻燃环氧树脂固化物,通过极限氧指数(LOI)、垂直燃烧(UL-94)和热重分析(TGA)测试研究了材料的阻燃性能、热降解行为,通过锥形量热(CONE)测试研究了材料的燃烧行为,通过扫描电镜(SEM)研究了材料炭层的形貌,同时还研究了APP与EG的不同配比对EP材料阻燃性能的影响。结果表明:当APP与EG的质量比为3∶2、添加量为5%时,阻燃EP材料通过了UL-94 V-0级,LOI值达到了29.0%。TGA测试结果表明:阻燃剂APP及EG的加入明显地改变了材料的热降解行为,促进了环氧树脂材料的提前降解和成炭,降低了材料的热降解速率,材料在700℃时的残炭量由14.6%提高到了29.9%。CONE测试结果表明:阻燃剂的加入明显降低了材料的热释放速率(HRR)和总热释放量(THR)。SEM测试结果表明:阻燃材料燃烧后形成了致密均一的炭层,能很好地阻止氧气和热量进入到材料的内部,同时减少可燃气体的逸出,从而抑制了基体树脂的进一步降解和燃烧,提高了材料的阻燃性能。  相似文献   

4.
《塑料》2018,(6)
将精制后的碱木质素代替部分聚醚多元醇,通过一步发泡法与聚合MDI混合制备了碱木质素聚氨酯泡沫,同时采用季戊四醇(PER)和聚磷酸铵(APP)复配组成膨胀阻燃剂(IFR)制备了碱木质素阻燃聚氨酯泡沫,通过极限氧指数(LOI)测试分析了碱木质素阻燃聚氨酯泡沫的阻燃性能。通过热重分析(TGA)、锥形量热测试(CONE)和扫描电子显微镜(SEM)测试,分别研究了所制试样的热降解行为和成炭性能、燃烧行为和残炭的形貌。分析结果表明:当碱木质素的添加量为聚醚多元醇的5%,APP与PER的质量比为3∶1,IFR的添加量为30%时,碱木质素基聚氨酯泡沫的LOI达到了24.8%,IFR的加入促进了碱木质素聚氨酯泡沫的降解和成炭,从而提高了材料的阻燃性能。  相似文献   

5.
姜洪丽  董建 《中国塑料》2019,33(7):38-43
以三嗪成炭发泡剂(CFA)及聚磷酸铵(APP)复配成膨胀阻燃剂(IFR),以二氧化硅(SiO2)及硅酸镁(MgSiO3)为协效剂制备阻燃TPU材料,对比研究了2种热塑性聚氨酯弹性体(TPU)材料的阻燃性能、力学性能、热降解行为、炭层的表面形貌及表面元素组成。结果表明,当IFR总添加量为30 %(质量分数,下同),SiO2占IFR的5 %时,1.6 mm样条在燃烧时产生大量熔滴,材料通过UL 94 V-2级,极限氧指数(LOI)为39.5 %,而当阻燃剂总添加量为26 %,MgSiO3占IFR的5 %时,1.6 mm样条在燃烧时无滴落,材料通过UL 94 V-0级,LOI为35.7 %,表明MgSiO3在该阻燃体系中具有很好的抑制熔滴的作用;与添加SiO2相比,MgSiO3的加入对材料拉伸性能的影响更小;MgSiO3的加入使得炭层中磷元素含量明显增加;MgSiO3的加入使得阻燃TPU材料在燃烧时产生了更加连续、致密且具有良好强度的炭层,对内部材料起到了更好的保护作用,从而提高了材料的阻燃性能。  相似文献   

6.
选用聚磷酸铵(APP)与二乙基次膦酸铝(ADP)复配用于木塑复合材料(WPC)的阻燃并研究了材料的阻燃性能。结果表明,纯WPC的氧指数(LOI)值为23.5%,当单独添加19%(wt)的APP时,材料通过了垂直燃烧测试UL-94 V-0级,LOI值为28.9%。当APP与ADP以质量比为6∶1复配,阻燃剂总添加量仅为15%(wt)时,材料通过了UL-94 V-0级,LOI值达到了28.7%,表明ADP/APP体系对WPC具有很好的协同阻燃效应。力学性能测试表明,APP/ADP体系的加入对材料的力学性能影响较小。热重分析测试表明,APP/ADP体系促进了材料的初期热降解,但提高了材料的成炭性能。锥形量热测试及扫描电镜对残炭的测试表明,APP/ADP体系的加入使得材料在燃烧过程中形成了膨胀、连续的炭层,很好地抑制了材料的燃烧,使得材料的热释放速率、总热释放量显著降低。  相似文献   

7.
《塑料科技》2018,(3):73-77
将竹炭(BPC)与膨胀阻燃剂(IFR)复配得到协效增强膨胀阻燃体系(BPC/IFR)添加到聚乳酸(PLA)中,加工成阻燃改性PLA材料,并测试了材料的阻燃性能、热降解行为和燃烧行为。实验结果表明,PLA/10%IFR/5%BPC体系可通过UL 94V-0级测试,极限氧指数(LOI)值为31.6%。N_2气氛下,800℃时PLA/IFR/BPC体系残炭率增大了8.5%。锥形量热(CONE)实验结果表明,PLA/IFR/BPC的热释放速率(HRR)和总热释放量(THR)都明显降低,THR值由91.4 MJ/m~2降至60.1 MJ/m~2。  相似文献   

8.
利用磷钨酸(PWA)与膨胀阻燃剂(IFR)复配得到复合阻燃剂,并与聚乳酸(PLA)熔融共混制备阻燃复合材料PLA/IFR/PWA。通过氧指数测试(LOI)、垂直燃烧(UL-94)、扫描电子显微镜(SEM)、锥形量热测试(CONE)和热失重分析(TGA)对该复合材料的阻燃性能和热稳定性能进行研究。结果表明:PLA/IFR/PWA复合材料表现出优异的阻燃效果和明显的抑烟作用。当添加总质量分数为20%(IFR为18%,PWA为2%)时,复合材料的LOI达到41.7%,UL-94等级为V-0等级,高温残炭量显著提高,燃烧过程中烟释放量明显降低。  相似文献   

9.
采用一步发泡法制备出聚氨酯泡沫(PUF),将精制碱木质素与聚磷酸铵(APP)按不同比例组成膨胀阻燃剂(IFR)并添加到PUF中,制得碱木质素/聚磷酸铵膨胀阻燃聚氨酯泡沫(PUF/IFR)。通过极限氧指数(LOI)测试、热重分析(TG)、扫描电镜(SEM)考察了PUF/IFR材料的阻燃性能、热降解行为、成炭性能及残炭微观形貌。结果表明:当碱木质素与APP的复配比为1:6、IFR添加量为30%时,PUF/IFR的LOI值达到26.3%。IFR的加入形成了连续致密的炭层附着在材料表面,降低了材料的热降解速率,提高了残炭率,从而改善了材料的热稳定性和阻燃性能。  相似文献   

10.
姜洪丽 《中国塑料》2018,32(7):122-125
以三嗪成炭发泡剂(CFA)及聚磷酸铵(APP)复配成膨胀阻燃剂(IFR),以硅酸镁(MgSiO3)为协效剂添加到热塑性聚氨酯弹性体(TPU)中制备阻燃TPU材料,研究了阻燃TPU材料的阻燃性能、力学性能、热降解行为和炭层的表面形貌。结果表明,纯TPU材料的极限氧指数仅为22.0 %,在空气中极易燃烧,当IFR添加量为28 %(质量分数,下同),MgSiO3添加量5 %时,材料的极限氧指数提高到37.1 %,通过UL 94 V-0级,表现出很好的阻燃效果;但是IFR/MgSiO3的加入使材料的拉伸强度和断裂伸长率明显下降,也使得TPU材料的起始热分解温度提前,最大热降解速率峰值降低,同时材料的残炭量得到了很大程度的提高。  相似文献   

11.
本文以三氯氧磷、对羟基苯甲醛及DOPO为原料成功合成了一种新型含磷阻燃剂DOPO-TPPO,采用FTIR测试对其结构进行了表征。通过热重分析测试(TGA)研究了产物的热稳定性、热降解行为及成炭性能,表明该阻燃剂具有较好的热稳定性和成炭性能。将阻燃剂DOPO-TPPO添加到环氧树脂中,以二氨基二苯硫砜(DDS)为固化剂制备阻燃环氧树脂固化物,通过极限氧指数(LOI)和垂直燃烧(UL-94)测试研究了环氧树脂固化物的阻燃性能。结果表明:合成产物的起始热分解温度为195℃,在700℃时的残炭量为29%,当阻燃剂添加量(质量分数)为11.0%时,环氧树脂固化物能通过垂直燃烧UL-94 V-0级,氧指数高达32.0%,表明该物质对环氧树脂材料具有优异的阻燃性能。  相似文献   

12.
《塑料科技》2015,(9):83-86
将大分子含磷-氮阻燃剂三聚氰胺四亚甲基硫酸膦齐聚物(MTMPSO)与聚磷酸铵(APP)复配得到的膨胀阻燃体系(IFR)添加到聚乙烯(PE)中制备成阻燃型PE材料(IFR-PE),研究了材料的阻燃性能、热降解行为、燃烧后的残炭形貌、力学性能及耐水性。实验结果表明:当IFR添加量为32%时,IFR-PE可通过UL 94V-0级,极限氧指数(LOI)达到了26%。热重分析(TGA)测试表明:800℃时,IFR-PE残炭率为23.4%,表明阻燃剂的添加大大提高了材料的成炭性能。扫描电镜(SEM)结果表明:IFR-PE燃烧后形成连续致密的炭层,能有效阻止热量传递和可燃气体的流动,提高了材料的阻燃性能。耐水性实验表明:IFR-PE的失重率仅为0.46%,具有很好的耐水性能。  相似文献   

13.
彭建文  彭中朝  宋强  李端生  黄若森  唐刚 《塑料》2020,49(2):32-35,39
采用简单方法合成苯基次膦酸铈(CeP),并将其作为阻燃剂加入聚乳酸(PLA)中,通过熔融共混技术制备聚乳酸/苯基次膦酸铈(PLA/CeP)复合材料。通过热重(TG)、极限氧指数(LOI)、UL-94垂直燃烧(UL-94)、微型量热(MCC)研究复合材料的热稳定性、阻燃性能和燃烧性能。通过阻燃测试发现,CeP能够提高复合材料阻燃性能,PLA/CeP20极限氧指数能达到24.3%并通过UL-94 V-2级别。热重分析的结果表明,CeP显著提高了PLA/CeP复合材料初始分解温度和成炭率。MCC测试结果表明,CeP能明显降低PLA/CeP复合材料火灾危险性。PLA/CeP20热释放速率峰值(PHRR)和总热释放(THR)分别为397 W/g和13.6 kJ/g,与纯聚乳酸相比,分别下降了13.9%和28.0%。因此,苯基次磷酸铈对聚乳酸具有良好的阻燃效果。  相似文献   

14.
以二乙基次膦酸铝(ADP)和二乙基次膦酸锌(ZDP)复配为阻燃剂制备了PET阻燃材料,通过极限氧指数测试(LOI)和垂直燃烧测试(UL-94)分析了材料的阻燃性能。通过热重分析测试(TGA)探讨了材料的热降解行为及其成炭性能。采用锥形量热测试(CONE)研究了材料的燃烧行为,并对其燃烧后残炭的形貌进行了表征。结果表明:用ADP和ZDP复配制备的PET阻燃材料能显著提高其阻燃性能。当阻燃剂含量为12%,即ADP与ZDP的质量配比为8∶4时,PET阻燃材料的LOI可达37.2%,且能通过UL-94 V-0级,此时材料的燃烧滴落物炭化程度高,燃烧时热释放速率低。  相似文献   

15.
将可膨胀石墨(EG)与P-N型膨胀阻燃剂(IFR)复合阻燃丙烯腈-丁二烯-苯乙烯共聚物(ABS)树脂,阻燃剂添加量为20%(质量分数,下同),通过极限氧指数(LOI)仪、垂直燃烧测试(UL-94)仪、锥形量热(CONE)仪和扫描电镜(SEM)研究了EG与IFR复合阻燃ABS的协同效应。结果表明,EG/IFR质量比为1/1为最佳配比,阻燃ABS的LOI达到29%,UL-94为V-0级;EG与IFR复合阻燃ABS,表现出一定的协同作用;通过SEM观察ABS/EG/IFR试样燃烧后样品发现,EG与IFR起到协同阻燃作用。  相似文献   

16.
尼龙11对膨胀型阻燃高密度聚乙烯性能的影响   总被引:1,自引:0,他引:1  
刘梅芳  刘渊  王琪 《塑料》2007,36(4):43-45
以氮磷复合型阻燃剂三聚氰胺磷酸盐(MP)以及小分子成炭剂季戊四醇(PER)和大分子成炭剂尼龙11组成的膨胀型阻燃剂体系阻燃高密度聚乙烯(HDPE).通过氧指数(LOI)、垂直燃烧(UL-94)、热重分析(TG)和力学性能测试研究了阻燃HDPE性能.研究表明少量尼龙11(PA6)成炭剂具有显著的协效阻燃效果,可使材料阻燃性能提高,达到UL-94 V-0级别.  相似文献   

17.
研究硅胶(SG)作为协效剂与IFR协同阻燃LGF/PP复合材料的性能。通过极限氧指数(LOI)、垂直燃烧(UL-94)、锥形量热仪(CONE)、热重分析法(TG)、扫描电子显微镜(SEM)、力学性能等测试表征LGF/PP/IFR/SG阻燃复合体系的性能。结果表明:当硅胶用量为2%时,阻燃复合材料的LOI为29.4%,且燃烧等级达到V-0级;CONE测试结果表明LGF/PP/IFR/SG阻燃复合材料的第一热释放速率峰值降低,而第二热释放速率峰消失;LGF/PP/IFR/SG阻燃复合材料具有较好的热稳定性,且产生致密均匀的炭层;并研究硅胶用量对复合材料力学性能的影响。  相似文献   

18.
以三嗪成炭发泡剂(CFA)与聚磷酸铵(APP)复配成膨胀阻燃剂(IFR),以蒙脱土、滑石粉、硫酸钡为无机填料,制备了膨胀阻燃聚丙烯材料。通过氧指数(OI)和垂直燃烧(UL 94)测试研究了材料的阻燃性能,通过拉伸、弯曲和冲击强度的测试研究了材料的力学性能;对比研究了无机填料的种类及含量对材料性能的影响。通过热重分析(TGA)研究了材料的热降解行为。结果表明:当固定膨胀阻燃剂用量为22%时,加入10%的硫酸钡使得材料的阻燃性能大幅度下降,不能通过UL 94测试。而添加了10%的蒙脱土的阻燃材料则能达到UL 94V-0级,氧指数为31.3%。从热重分析结果可以看出,蒙脱土的加入促进了材料的成炭,同时提高了材料在高温时的热稳定性。力学性能测试表明:无机填料的加入,提高了材料的弯曲强度,但材料的拉伸和冲击强度有所下降。  相似文献   

19.
本文通过甲基膦酸和无水哌嗪反应制备中间体二甲基膦酸哌嗪,将其与新戊二醇进行酯化反应,制备出新型单分子膨胀阻燃剂甲基膦酸-哌嗪-新戊二醇齐聚物(MPPNGO),通过傅里叶红外光谱(FTIR)对其结构进行了表征。通过热重分析(TGA)对阻燃剂MPPNGO的热稳定性及成炭性能进行了表征。测试结果表明,合成物MPPNGO的起始分解温度为233.1℃,在600oC时的残炭量为12 wt%,表明MPPNGO具有良好的热稳定性,可以满足聚乙烯(PE)的加工要求。将阻燃剂MPPNGO添加到PE中制备阻燃PE材料。通过极限氧指数(LOI)和垂直燃烧(UL-94)对材料的阻燃性能进行了表征;通过TGA对阻燃PE的热降解行为进行了分析,通过FTIR对阻燃PE的残炭进行了分析。结果表明:当MPPNGO添加17 wt%时,3.2mm的样品达到了UL-94 V-0级,LOI为23.7%,表明MPPNGO阻燃性能优异。TGA测试表明:MPPNGO的加入促进了材料的提前降解和成炭,提高了材料在高温时的热稳定性。残炭的FTIR测试表明,阻燃PE材料燃烧后,阻燃剂中的磷以磷氧化物的形式留在了炭层中,起到了加固炭层的作用,有利于材料阻燃性能的提高。  相似文献   

20.
将炭化酒糟(CDDGS)与聚磷酸铵(APP)复配作为阻燃剂加入聚乳酸中,通过熔融共混制得PLA/CDDGS/APP生物基复合材料。利用扫描电镜、红外光谱以及X射线衍射等分析方法,研究了CDDGS其表面形貌和成炭效果。测试了含不同配比阻燃剂时复合材料的拉伸强度、热稳定性能以及阻燃性能。结果表明,复合材料PLA/CDDGS/APP,当阻燃剂的质量分数为20%且APP与CDDGS质量比为1∶1时,复合材料的极限氧指数(LOI)为33.0%,且通过UL-94的V-0级测试。燃烧过程中阻燃剂生成了石墨化程度较高的炭层,具有优异的热稳定性与隔热性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号