首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以二乙基次膦酸铝(ADP)和二乙基次膦酸锌(ZDP)复配为阻燃剂制备了PET阻燃材料,通过极限氧指数测试(LOI)和垂直燃烧测试(UL-94)分析了材料的阻燃性能。通过热重分析测试(TGA)探讨了材料的热降解行为及其成炭性能。采用锥形量热测试(CONE)研究了材料的燃烧行为,并对其燃烧后残炭的形貌进行了表征。结果表明:用ADP和ZDP复配制备的PET阻燃材料能显著提高其阻燃性能。当阻燃剂含量为12%,即ADP与ZDP的质量配比为8∶4时,PET阻燃材料的LOI可达37.2%,且能通过UL-94 V-0级,此时材料的燃烧滴落物炭化程度高,燃烧时热释放速率低。  相似文献   

2.
李旭  许苗军  李斌 《塑料》2016,(4):39-42,72
将实验室自制的三嗪大分子成炭发泡剂(CFA)、聚磷酸铵(APP)及硅树脂复配成膨胀阻燃剂(IFR)添加到聚乳酸(PLA)材料中制备阻燃PLA(IFR-PLA)材料,通过极限氧指数(LOI)和垂直燃烧(UL-94)测试研究了材料的阻燃性能。通过热重分析(TGA)测试研究了材料的热降解行为和成炭性能,通过锥形量热(CONE)测试研究了材料的燃烧行为,并对其燃烧后残炭的形貌进行研究。结果表明:当APP与CFA的质量比为5∶1,IFR的添加量为15%时,IFR-PLA材料通过UL-94 V-0级,LOI值达33.5%。IFR的加入促进了PLA材料的降解和成炭,从而提高了材料的阻燃性能。  相似文献   

3.
《塑料》2015,(6)
采用一种新型磺酸盐阻燃剂与间苯二酚双(二苯基磷酸酯)(RDP)复配,用于聚碳酸酯(PC)的阻燃改性。通过氧指数测定(LOI)、垂直燃烧试验(UL-94)、热重分析(TG)及力学性能、耐水性能测试系统研究了复配体系对PC的性能影响。结果表明:最优复配比为RDP∶KTS=100∶1,当KTS的添加量为0.1%,RDP为10%时,复合材料的LOI值为37%,阻燃等级达到UL-94 V-0级,无滴落,力学性能、耐水性能得到极大改善。  相似文献   

4.
探究了二乙基次磷酸铝(OP1230)和二氧化硅(SiO2)复配使用对聚对苯二甲酰己二胺/己二酰己二胺(PA6T-66)树脂的阻燃协效作用。结果表明:OP1230的加入可显著提高材料的极限氧指数(LOI),当OP1230质量分数为6.0%时,材料的LOI从21.8%(未添加OP1230)提高至28.7%,且UL-94阻燃测试达到了V-2级。在此基础上,通过复配SiO2进一步提高材料阻燃性能。当SiO2质量分数为3.0%时,材料的LOI提高至29.4%,UL-94阻燃测试达到了V-0级。热氧降解和锥形量热数据也进一步证明OP1230和SiO2在PA6T-66阻燃体系中存在协效作用。  相似文献   

5.
《塑料》2019,(6)
三嗪成炭剂(CNCH-DA)与多聚磷酸铵(APP)复配成膨胀型阻燃剂(IFR)应用于EVA的阻燃改性,采用氧指数测定仪(LOI)、垂直燃烧测定仪(UL-94)分析了EVA/IFR复合材料的阻燃性能,采用微型量热仪(MCC)分析了其燃烧行为,并采用热重分析仪(TGA)和扫描电子显微镜(SEM)研究了其阻燃机理。结果表明,当APP与CNCH-DA的质量比为2∶1时,EVA/IFR复合材料的LOI值达到27. 7%,并且通过了UL-94 V-0级测试; MCC分析结果表明,添加了IFR后,EVA的燃烧性能下降; TGA分析结果表明,当添加IFR后,EVA/IFR复合材料的热降解推迟,残炭量增加;SEM分析表明,EVA/IFR在燃烧后能形成致密且蓬松的炭层,起到良好的阻燃效果,而EVA/CNCH-DA燃烧后,形成众多不致密的微球。  相似文献   

6.
聚磷酸铵(APP)单独应用于阻燃环氧树脂(EP)时,阻燃效率较低,往往需要较大的添加量才能达到环氧树脂复合材料的阻燃要求。通过制备层状双金属氢氧化物Zn-Fe-LDH,然后将其与聚磷酸铵复配引入环氧树脂中,成功制备出阻燃型复合材料(Zn-Fe-LDH+APP)/EP。极限氧指数(LOI)及垂直燃烧(UL94)测试表明,当Zn-Fe-LDH和APP的总添加量为5%时,(Zn-Fe-LDH+APP)/EP的LOI为28.6%,UL94可达V-1级,锥形量热结果表明,相比较纯APP,Zn-Fe-LDH和APP体系可明显降低环氧树脂的热释放和烟释放。  相似文献   

7.
《塑料》2015,(4)
将聚磷酸铵(APP)与可膨胀石墨(EG)进行复配后添加到环氧树脂(EP)中,以间苯二胺(PDA)为固化剂,制备阻燃环氧树脂固化物,通过极限氧指数(LOI)、垂直燃烧(UL-94)和热重分析(TGA)测试研究了材料的阻燃性能、热降解行为,通过锥形量热(CONE)测试研究了材料的燃烧行为,通过扫描电镜(SEM)研究了材料炭层的形貌,同时还研究了APP与EG的不同配比对EP材料阻燃性能的影响。结果表明:当APP与EG的质量比为3∶2、添加量为5%时,阻燃EP材料通过了UL-94 V-0级,LOI值达到了29.0%。TGA测试结果表明:阻燃剂APP及EG的加入明显地改变了材料的热降解行为,促进了环氧树脂材料的提前降解和成炭,降低了材料的热降解速率,材料在700℃时的残炭量由14.6%提高到了29.9%。CONE测试结果表明:阻燃剂的加入明显降低了材料的热释放速率(HRR)和总热释放量(THR)。SEM测试结果表明:阻燃材料燃烧后形成了致密均一的炭层,能很好地阻止氧气和热量进入到材料的内部,同时减少可燃气体的逸出,从而抑制了基体树脂的进一步降解和燃烧,提高了材料的阻燃性能。  相似文献   

8.
以聚酰胺(PA) 6为基体材料,添加二乙基次膦酸铝(ADP)、三聚氰胺氰尿酸盐(MCA)为阻燃剂,通过熔融共混制备无卤阻燃PA6复合材料。采用水平垂直燃烧仪、氧指数测定仪、万能材料试验机以及热重分析仪研究了ADP和MCA用量对无卤阻燃PA6阻燃性能、力学性能、热降解行为的影响,并采用扫描电子显微镜观察了燃烧后炭层的形貌,探讨了ADP与MCA间的协效阻燃作用。结果表明,制备的阻燃PA6复合材料均能达到UL94 V–0阻燃级别;当ADP添加量为18%时,极限氧指数(LOI)可达33.3%;当添加14% ADP时,ADP/MCA复配阻燃体系的LOI值保持在31%以上;MCA对ADP产生协效阻燃作用,MCA的加入使得热分解温度降低,加速了PA6在燃烧时的成炭,改善了炭层结构,并使PA6具有较好的力学性能。  相似文献   

9.
《塑料科技》2015,(8):38-42
以芳磺酸盐(KTS)与双酚A双(二苯基磷酸酯)(BDP)作为复配体系,制备了阻燃聚碳酸酯(PC)复合材料。通过极限氧指数(LOI)、垂直燃烧、热失重分析(TGA)、力学性能测试实验研究了复配阻燃剂对PC阻燃性能、热稳定性和力学性能的影响。结果表明:当KTS、BDP用量分别为0.1%和12.5%时,体系的LOI达到最大值37.5%,垂直燃烧等级为UL 94V-0级;KTS与BDP复配使用后,对PC有良好的协同阻燃作用,有利于提高材料的热稳定性,同时提高了阻燃PC复合材料的成炭能力,改善了残炭质量。  相似文献   

10.
三嗪类成炭剂的合成及对聚丙烯的阻燃   总被引:1,自引:0,他引:1  
以三聚氯氰、二乙醇胺和乙二胺为原料,设计并合成了一种新型三嗪类成炭剂(CA),将其与聚磷酸铵(APP),三聚氰胺(MA)复配成膨胀型阻燃剂(IFR),并用其对聚丙烯(PP)进行阻燃.使用混料设计的方法研究了CA对阻燃PP体系的阻燃性能和力学性能的影响.结果表明.所复配的IFR极大地改善了PP的阻燃性能.当IFR是由80.3%(质量分数,下同)的APP、13.0%的MA和6.7%的CA组成时,IFR对PP体系具有最有效的阻燃性.当PP中IFR加入量为30%时,阻燃PP体系的的极限氧指数(LOI)达到35.5%;当IFR加入量仅为25%时,阻燃PP体系的的阻燃性能也通过UL-94 V-0级,LOI值达到32.5%.  相似文献   

11.
通过添加可膨胀石墨(EG)和聚磷酸铵(APP)单组分阻燃剂及其复配阻燃剂,制备了聚氨酯–酰亚胺(PUI)泡沫塑料阻燃体系,并对其阻燃性能、热性能、表面碳层形貌及力学性能等进行了研究。结果表明,在相同阻燃剂添加量下,复配阻燃体系的极限氧指数(LOI)值高于单一阻燃剂阻燃体系,PUI/EG/APP体系的LOI值由18.6%提高至30.9%。热失重分析表明EG和APP间的相互作用导致了PUI/EG/APP体系在高温阶段的热降解速率下降,残炭率显著上升。扫描电镜分析表明PUI/EG/APP体系在燃烧后能生成更加连续和致密的炭层。在相同阻燃剂添加量的情况下,EG/APP复配使用能够减少EG对PUI压缩性能的损害。  相似文献   

12.
《塑料科技》2016,(10):66-70
将可膨胀石墨(EG)与聚磷酸铵(APP)复配并添加至聚苯乙烯(PS)基体中,制备了PS/EG/APP阻燃复合材料。通过极限氧指数(LOI)、水平垂直燃烧(UL 94)测试,以及热重分析(TG)和扫描电镜分析(SEM)对PS/EG/APP阻燃复合材料的阻燃性能和热稳定性进行了检测,并优化了该材料配方。结果表明:复合阻燃剂EG/APP的加入,使得体系的LOI值与热稳定性均明显提高。其中当复合阻燃剂EG/APP的添加量为30 phr,且质量比为3:1时,阻燃体系的LOI值可达到31.8%,而单独添加同量EG或APP的阻燃体系,其LOI值仅为29%和20.8%,这说明EG与APP之间存在协同效应。  相似文献   

13.
利用乙二胺(EDA)对聚磷酸铵(APP)进行改性,得到聚磷酸铵衍生物(MAPP)。采用MAPP、石墨(EG)和木粉(MF)复配的方式得到膨胀性阻燃剂,并与EVA复合得到泡沫复合材料。采用FT-IR、XRD、1H NMR表征接枝效果,利用LOI和UL-94测试仪、锥形量热仪(CONE)、TG及SEM等分析材料的阻燃性能、残炭的形态及力学性能。结果表明:EDA已成功接枝在APP上,所形成的MAPP能够有效提高复合发泡材料的阻燃性能、减少热释放量;MAPP/EVA复合发泡材料的残炭层更加致密和完整,能够有效起到隔热、隔氧的作用;并且MAPP能够提高材料的耐水性及与EVA基体的相容性。当MAPP添加量为20%时,体系的LOI可达27.6%,且UL-94为V-0级别,拉伸强度、断裂伸长率分别可达1.282 MPa、236.40%,阻燃材料的综合性能达到最优。  相似文献   

14.
以聚酯(PET)为树脂基体,采用阻燃剂三聚氰胺聚磷酸盐(MPP)与二乙基次膦酸铝(ADP)复配制备出MPP/ADP-PET阻燃热封膜,研究了2种阻燃剂配比对无卤阻燃PET热封膜的力学性能和阻燃性能的影响规律。结果表明,MPP与ADP复配阻燃的PET热封膜的力学性能及阻燃性能均优于单一MPP阻燃的PET热封膜。当MPP∶ADP质量比分别为8∶2、6∶4和5∶5的复配阻燃PET热封膜时,胶对胶贴合强度均远大于30 N/25 mm,且具有可断性,胶对导线粘接力都大于0.3 N/0.3mm,且极限氧指数为25.7%~27.7%,垂直燃烧水平均达到了UL-94 V-1级。  相似文献   

15.
以双酚A型苯并噁嗪(BOZ)作为成炭协效剂,与二乙基次磷酸铝(ADP)复配,通过熔融共混制备了阻燃尼龙66(PA66)复合材料。通过垂直燃烧测试(UL94)、极限氧指数(LOI)、锥形量热(Cone)、扫描电镜(SEM)以及热分析(TG/DTG)等考察了复合材料的协同阻燃性能及作用机制。结果表明:BOZ和ADP具有良好的协同阻燃效应。适量BOZ的引入不但可以提高材料的阻燃性能,还可以改善材料的热稳定性,并且对材料的力学性能影响不大。添加0.3wt%BOZ和7.7wt%ADP时,ADP/BOZ阻燃PA66复合材料的垂直燃烧达到UL94 V-0级,LOI达到了32.8%,拉伸强度、弯曲强度分别为81.52、111.11MPa。阻燃机理研究表明:ADP/BOZ和ADP都是以气相阻燃作用为主的气相和凝聚相协同阻燃机制。  相似文献   

16.
以双酚A型苯并嗪(BOZ)为成炭协效剂,二乙基次磷酸铝(ADP)为阻燃剂,通过熔融共混制备了阻燃尼龙66(PA66)复合材料。通过垂直燃烧测试(UL94)、极限氧指数(LOI)、锥形量热(Cone)、SEM以及TGA等考察了复合材料的协同阻燃性能及作用机制。结果表明:BOZ和ADP具有良好的协同阻燃效应。适量BOZ的引入不但可以提高材料的阻燃性能,还可以改善材料的热稳定性,并且对材料的力学性能影响不大。添加占体系质量分数0.3%BOZ和质量分数7.7%ADP时,ADP/BOZ阻燃PA66复合材料的垂直燃烧达到UL94V-0级,LOI达到了32.8%,拉伸强度、弯曲强度分别为81.52、111.11 MPa。阻燃机理研究表明:ADP/BOZ和ADP都是以气相阻燃作用为主的气相和凝聚相协同阻燃机制。  相似文献   

17.
利用磷钨酸(PWA)与膨胀阻燃剂(IFR)复配得到复合阻燃剂,并与聚乳酸(PLA)熔融共混制备阻燃复合材料PLA/IFR/PWA。通过氧指数测试(LOI)、垂直燃烧(UL-94)、扫描电子显微镜(SEM)、锥形量热测试(CONE)和热失重分析(TGA)对该复合材料的阻燃性能和热稳定性能进行研究。结果表明:PLA/IFR/PWA复合材料表现出优异的阻燃效果和明显的抑烟作用。当添加总质量分数为20%(IFR为18%,PWA为2%)时,复合材料的LOI达到41.7%,UL-94等级为V-0等级,高温残炭量显著提高,燃烧过程中烟释放量明显降低。  相似文献   

18.
以间苯二胺为固化剂,聚苯氧基磷酸210氢9氧杂磷杂菲对苯二酚酯(POPP)、聚磷酸铵(APP)为阻燃剂, 复配质量分数为1 %有机蒙脱土(OMMT)为膨胀阻燃体系,对环氧树脂(EP)进行阻燃改性。通过极限氧指数测定仪、垂直燃烧测定仪同步热分析仪、锥形量热等研究改性EP的阻燃性能、热性能和力学性能。结果表明,当膨胀阻燃体系(2.5 %POPP/APP+1 %OMMT)添加量为3.5 %时,改性EP可达UL 94 V-0级,同时LOI为25.2 %;当膨胀阻燃体系添加量为11 %时,改性EP的LOI值进一步升高到31.7 %;阻燃剂的加入,使EP的初始分解温度略有降低,但残炭量明显增加;POPP/APP/OMMT的加入很大程度上降低了EP的热释放速率、烟释放量和平均热释放速率。  相似文献   

19.
《塑料》2016,(4)
采用聚氨酯(PU)为囊材,聚磷酸铵(APP)为芯材制备了微胶囊阻燃剂(MAPP)。通过溶解度测试、傅里叶红外光谱(FTIR)和扫描电镜(SEM)对微胶囊的核壳结构进行了表征。采用氧指数法、垂直燃烧法和SEM考察了APP和MAPP对PP的阻燃效果。结果表明:与APP相比,MAPP溶解度明显下降,FITR和SEM测试表明APP被PU包覆了;通过SEM观察MAPP/PP体系在燃烧后能生成更加连续和致密的炭层,有效地保护了炭层下的材料。在聚丙烯复合材料中,当APP和MAPP添加量相同时(30%),LOI值从22.0%提高到32.0%,且UL-94达到V-0级。  相似文献   

20.
《塑料科技》2015,(9):83-86
将大分子含磷-氮阻燃剂三聚氰胺四亚甲基硫酸膦齐聚物(MTMPSO)与聚磷酸铵(APP)复配得到的膨胀阻燃体系(IFR)添加到聚乙烯(PE)中制备成阻燃型PE材料(IFR-PE),研究了材料的阻燃性能、热降解行为、燃烧后的残炭形貌、力学性能及耐水性。实验结果表明:当IFR添加量为32%时,IFR-PE可通过UL 94V-0级,极限氧指数(LOI)达到了26%。热重分析(TGA)测试表明:800℃时,IFR-PE残炭率为23.4%,表明阻燃剂的添加大大提高了材料的成炭性能。扫描电镜(SEM)结果表明:IFR-PE燃烧后形成连续致密的炭层,能有效阻止热量传递和可燃气体的流动,提高了材料的阻燃性能。耐水性实验表明:IFR-PE的失重率仅为0.46%,具有很好的耐水性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号