首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 134 毫秒
1.
该文提出了一种结构简单的高性能带隙电压基准源。电路设计中采用负反馈箝位技术实现电压箝位,消除了运放自身失调效应的影响,简化了电路设计;输出部分采用调节型共源共栅结构,保证了高的电源抑制比(PSRR)。整个电路采用SMIC0.18m标准CMOS工艺实现,并用HSPICE进行仿真,结果表明所设计的电路在-15~70℃范围内的温度系数为10.8ppm/℃,直流PSRR为74.7dB,在10Hz~1MHz频带内的总的输出噪声电压为148.7V/sqrt(Hz)。  相似文献   

2.
尹勇生  易昕  邓红辉 《微电子学》2017,47(6):774-778
根据带隙基准电压源工作原理,设计了一种带2阶温度补偿的负反馈箝位CMOS基准电压源。不同于带放大电路的带隙基准电压源,该基准电压源不会受到失调的影响,采用的负反馈箝位技术使电路输出更稳定。加入了高阶补偿电路,改善了带隙基准电压源的温漂特性。电路输出阻抗的增大有效提高了电源抑制比。基于0.18 μm CMOS 工艺,采用Cadence Spectre软件对该电路进行了仿真,电源电压为2 V,在-40 ℃~110 ℃温度范围内温度系数为4.199 ×10-6/℃,输出基准电压为1.308 V,低频下电源抑制比为78.66 dB,功耗为120 μW,总输出噪声为0.12 mV/Hz。  相似文献   

3.
提出一种基于电流型的PWM(脉宽调制)控制的放大器,该电流型放大器通过直接控制外电路电感电流峰值的大小,间接地控制PWM脉冲宽度。该放大器反馈电路中采用电压外环和电流内环,保证控制器的瞬态电流峰值跟随误差信号而变,并对电流采样电路优化设计使其具有一定的箝位功能。Cadence Spectre仿真结果表明:该电路增益为3 V/V,同相端最大输入信号电压为0.96 V,传输延迟仅为145.78 ns,仿真测试表明该电路完全达到设计指标要求。  相似文献   

4.
采用0.18 μm BCD工艺,设计了一种用于宽输入Buck的多电源轨电路。该电路由一条闭环电源轨和多条开环电源轨组成。闭环电源轨由无需预降压的宽输入LDO提供。通过电荷泵箝位和辅助箝位电路,在自举电容恒流充电时,可将开环电源轨箝位在几个固定的电位。电路仿真表明,在5~45 V的输入条件下,闭环电源轨都能稳定输出3.996 V的电压,线性调整率为0.62 μV/V。在上下管交替导通时,开环电源轨VDD0被箝位在6.35~6.72 V。在负载阶跃时,开环电源轨VDD1在4.084~4.167 V内变化。  相似文献   

5.
《电子与封装》2017,(11):19-22
随着射频电路工作频率的不断升高,ESD已经成为了影响电路可靠性和射频电路性能的重要因素。针对高速射频电路,设计了高速I/O口ESD防护电路和电源到地的箝位电路,并采用斜边叉指型二极管进行版图和性能优化。采用Jazz 0.18μm SiGe BiCMOS工艺对该ESD防护电路进行设计和流片。经过测试得到,ESD保护电压最高可达到3000 V。更改二极管叉指数取得更高的ESD防护级别,改进后保护电压最高可达到4500 V。  相似文献   

6.
文章设计了一种工作在亚闽值状态下的CMOS电压基准源,分析了MOSFET工作在亚闽区的电压和电流限定条件。电压基准源可提供与工艺基本无关近似零温度系数的基准电压。为了提高电路的电源抑制比,该电路采用了共源共栅电流镜结构。该结构采用了一种新型的偏置电路.使得电流镜各级联管均工作在饱和区边缘而不脱离饱和区,提高输出电压摆幅,得到有较高恒流特性的基准电流。该电路采用0,6μmCMOS工艺,通过Spectra仿真,可工作在2V电压下,输出基准电压1.4V,温度系数为17×10^-6(V/℃)。  相似文献   

7.
冯冠儒  罗萍  杨健  唐天缘  曹麒 《微电子学》2022,52(5):752-757
设计了一种应用于有源箝位正激变换器拓扑的线缆压降补偿电路。在适当时刻对电路CS引脚进行采样,得到负载电流信息,再根据该信息自适应调整误差放大器的基准电压,有效降低了负载调整率,提高了输出电压精度。该电路基于0.18 μm 40 V BCD工艺设计。仿真结果表明,在3~30 A负载电流范围内,未经线缆补偿时,有源箝位正激变换器的整体负载调整率为9.8 mV/A;引入线缆补偿后,整体负载调整率降低为0.096 mV/A,仅为未经线缆补偿前的0.98%。  相似文献   

8.
李振森  徐军明 《电子器件》2009,32(6):1055-1058
由于高PF(功率因数)宽电压反激式开关电源的变压器漏感会导致过压尖峰很高,需采用箝位电路吸收.目前常用的三种箝位电路有TD箝位(齐纳箝位)、RCD箝位、TRCD箝位电路,论文分别设计了三种50 W单级PFC的箝位电路.对三种箝位电路的箝位电压波形、EMI、温升和效率进行了测试,测试表明它们的温升、EMI依次降低;RCD和TRCD箝位的电源效率大于TD箝位的.  相似文献   

9.
本文提出了一种新颖的电压限位电路。该电路该采用电压跟随器FOLLOWER和模拟二选一选择器结构,其中的比较器采用PNP双极型三极管,从而使输出更精确地跟随输入。与传统电压限压电路相比,该电路在设定的电压范围内,输出电压能更好地跟随输入电压变化,在输出端误差小,设定的电压范围以外,电路输出能固定在某一特定值。本电路基于0.35 um BCD工艺,对所设计电路进行了仿真验证。仿真结果表明,当下限阈值VTH-设定在0.5V,上限阈值VTH+设定在2V,输入电压VIN输入范围在0~3V内时,输出电压精确跟随VIN的变化而变化。  相似文献   

10.
在到达纳米级工艺后,传统的静电放电防护(ESD)电源箝位电路的漏电对集成电路芯片的影响越来越严重。为降低漏电,设计了一种新型低漏电ESD电源箝位电路,该箝位电路通过2个最小尺寸的MOS管形成反馈来降低MOS电容两端的电压差。采用中芯国际40 nm CMOS工艺模型进行仿真,结果表明,在相同的条件下,该箝位电路的泄漏电流仅为32.59 nA,比传统箝位电路降低了2个数量级。在ESD脉冲下,该新型ESD箝位电路等效于传统电路,ESD器件有效开启。  相似文献   

11.
一种用于高压PMOSFET驱动器的电压跟随电路   总被引:1,自引:0,他引:1  
通常PMOSFET栅源电压为-20~20 V,而用于GaN功率放大器的高压PMOSFET驱动器,其工作电压为28~50 V,因此需要一种新型电路结构来保证PMOSFET栅源电压工作在额定范围。设计了一种新型电压跟随电路,采用新型多环路负反馈结构,核心电路主要为电压基准单元、减法器单元、误差放大器单元和采样单元,可产生稳定的跟随电压。该电路具有宽电源电压范围、高输出稳定性以及低温度漂移等特性。基于0.5μm BCD工艺对电路进行流片,测试结果表明,采用该电路的驱动器芯片,其电源电压为15~50 V,输出电压变化量约为0.6 V,在-55~125℃温度范围内,电压漂移量约为0.12 V,满足大多数PMOSFET栅源电压的应用要求。  相似文献   

12.
在电子设计中为了灵活准确地设置电压基准值,设计了可编程电压基准源电路。详细阐述了电路的设计思路和工作原理。利用5片2.048 V带隙电压基准源芯片串联产生10.24 V电压作为基准。随后创新地利用单片机控制1024抽头的数字电位器对基准电压进行分压,结合精准运放的反向放大电路,最后输出-10.24 V到10.22 V的可编程精准电压值,输出电压分辨力达20 mV。测试结果表明,该电路具有输出线性度好、精度高、性能稳定等优点。  相似文献   

13.
针对传统欠压锁定(UVLO)电路结构复杂和响应速度慢的问题,设计了一种高精度的快速响应欠压锁定电路.该电路整体均由CMOS管组成,结构简单且易于实现.采用电流模控制技术,随电源电压呈二次方曲线变化的自偏置电流控制阈值电压的产生,有效提高了电路的响应速度.该欠压锁定电路基于0.18μm BCD工艺设计,并利用HSPICE进行仿真验证,当电源电压在0~5V区间变化时,输出电压翻转的上阈值门限为3.91 V,相应下阈值门限为3.82V,迟滞量为90 mV,温度在-40~125℃范围变化时,阈值门限电压容差仅为0.9μV,可实现输出电压的高精度转换,电路面积仅为15 μm×48μm.  相似文献   

14.
实现了一种新型恒压输出电荷泵电路,通过选择合理的电荷泵结构能有效抑制反向电流及衬底电流,并通过一种负反馈稳压电路得到低纹波且不随电源电压变化的稳压输出,非常适用于MEMS麦克风。该电路采用MIXIC0.35μm标准CMOS工艺实现,测试结果表明该电路能自适应2.8~3.6V的电源电压变化,输出稳定的9V直流电压。  相似文献   

15.
文中主要对DC-DC降压芯片电路进行研究,重点设计了使能保护电路模块。该电路模块设计了1.5 V和2.5 V两个比较电压点。当UEN小于1.5 V,整个芯片关断。当UEN超过1.5 V但小于2.5 V时,电源供电正常。当使能UEN大于2.5 V后,整个芯片正常工作。电路采用CMSC1μm5 V/40 V HVCMOS工艺中的5 V低压器件来构建,并在Cadence软件下进行了仿真验证。  相似文献   

16.
基于先进的0.35um BCD工艺,对传统欠压保护电路缺点进行分析,设计实现了一种可应用于电机驱动芯片的欠压保护电路。电路结构简单,不需要额外的带隙基准电路,同时也省去了电压比较器电路。特别地,电路考虑了器件的温度特性,减少温度变化对电路的翻转阈值和迟滞量的影响。通过使用Cadence Spectre工具进行电路仿真,结果表明电路工作正常,当电源电压降低到2.7V时,输出低电平,当电压重新上升到2.83V时,输出恢复到高电平,迟滞量为0.13V,具有迟滞功能。  相似文献   

17.
张海瑞  张涛 《现代电子技术》2011,34(16):192-194
设计了一种DC-DC升压型开关电源的低压启动电路,该电路采用两个在不同电源电压范围内工作频率较稳定的振荡器电路,利用电压检测模块进行合理的切换,解决了低输入电压下电路无法正常工作的问题,并在0.5μm CMOS工艺库(VthN=0.72 V,VthP=-0.97 V)下仿真。仿真结果表明,在0.8 V低输入电压时,通过此升压型开关电源,可以将VDD升高至3.3 V。  相似文献   

18.
GaN半桥输出点电压在死区时间为负值,给GaN功率器件栅极驱动电路信号通信带来了挑战。通过研究驱动器电平移位锁存电路工作状态与半桥功率级输出节点电压跳变、死区时间负压之间的相互影响,设计了一种新型的零静态功耗电平移位电路及其误触发消除电路。电路采用100 V BCD 0.18μm工艺设计,在输入电压100 V、开关频率5 MHz的GaN半桥变换器中对版图进行了后仿真。仿真结果表明,当半桥功率级输出节点分别为-3 V和100 V时,延时为4.5 ns和1.5 ns。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号