首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为了优化在长距离光纤通讯系统中采用的1.31μm波长的量子阱激光器,对AlGaInAs/InP材料的有源区应变补偿的量子阱激光器进行了设计研究。采用应变补偿的方法,根据克龙尼克-潘纳模型理论计算出量子阱的能带结构,设计出有源区由1.12%的压应变AlGaInAs阱层和0.4%的张应变AlGaInAs垒层构成。使用ALDS软件对所设计出的器件进行了建模仿真,对其进行了阈值分析和稳态分析。结果表明,在室温25℃下,该激光器具有9mA的低阈值电流和0.4W/A较高的单面斜率效率;在势垒层采用与势阱层应变相反的适当应变,可以降低生长过程中的平均应变量,保证有源区良好的生长,改善量子阱结构的能带结构,提高对载流子的限制能力,降低阈值电流,提高饱和功率,改善器件的性能。  相似文献   

2.
讨论了影响激光器高温特性的主要因素,提出了在1.3μm高温无致冷AlGaInAs应变量子阱激光器中采用倒台脊波导(RM-RWG)结构可以改善激光器高温无致冷的工作特性,研制出了RM-RWG结构的1.3μm高温无致冷AlGaInAs应变量子阱激光器,其阈值电流为6mA,特征温度达到95K(25℃~85℃),这些结果为目前文献报道的最好水平.  相似文献   

3.
讨论了影响激光器高温特性的主要因素,提出了在1.3μm高温无致冷AlGaInAs应变量子阱激光器中采用倒台脊波导(RM-RWG)结构可以改善激光器高温无致冷的工作特性,研制出了RM-RWG结构的1.3μm高温无致冷AlGaInAs应变量子阱激光器,其阈值是流为6mA,特征温度达到95K(25℃-85℃),这些结果为目前文献报道的最好水平。  相似文献   

4.
重点介绍了670nm LED材料的结构与制备方法,用MOCVD方法生长了较高压应变的670nm多量子阱。分析比较了670nm量子阱室温光荧光谱线宽度的影响因素,指出室温光荧光主要来源于带-带复合,荧光谱线宽度的减小是应变量子阱轻重空穴能级分离的结果,并不意味着量子阱界面质量的改进。同时介绍了二乙基锌(DEZn)的掺杂技术和掺杂浓度,通过优化掺杂条件和退火条件,p型AlInP材料获得了0.9×1018/cm3的空穴密度。外延材料制作成200μm×200μm尺寸的LED管芯,在20mA工作电流下亮度为22~24mcd。器件结果表明,用5个压应变量子阱的有源区并且采用DEZn掺杂可以制作出高亮度的670nm LED外延材料。  相似文献   

5.
高饱和电流14xx nm应变量子阱激光器的研制   总被引:1,自引:1,他引:1  
报道了14xx nm应变量子阱(SQW)激光器管芯的研制成果。通过金属有机化学气相沉积(MOCVD)生长工艺生长14xx nm AlGaInAs/AlInAs/InP应变量子阱外延片,采用带有锥形增益区的脊型波导结构制作激光器管芯。生长好的外延片按照双沟脊型波导激光器制备工艺进行光刻、腐蚀,制作P面电极(溅射 TiPtAu)、减薄、制作N面电极(蒸发AuGeNi),然后将试验片解理成Bar;为获得高的单面输出功率,用电子回旋共振等离子体化学气相沉积(ECR)进行腔面镀膜,HR=90%,AR=5%;解理成的管芯P面朝下烧结到铜热沉上,TO3封装后在激光器综合测试仪进行测试。管芯功率达到440 mW以上,饱和电流3 A以上,峰值波长1430 nm,远场发散角为40°×14°。  相似文献   

6.
研究了生长温度和中断时间对AlGaInAs/AlGaAs量子阱外延质量的影响,并使用金属有机化合物汽相沉积(MOCVD)外延生长了AlGaInAs/AlGaAs量子阱和852nm半导体激光器。通过使用反射各向异性谱(RAS)和光致发光谱在线监测和研究了AlGaInAs/AlGaAs界面的外延质量。研究结果表明高温生长可以导致从AlGaInAs量子阱层到AlGaAs势垒层的In析出现象。通过优化生长温度和在AlGaInAs/AlGaAs界面处使用中断时间,可以有效抑制In析出,从而获得AlGaInAs/AlGaAs陡峭界面。使用优化后的外延生长条件,外延生长了整个852nm半导体激光器,使用RAS在线监测了激光器的外延生长过程,可以有效地分辨出不同外延层和生长阶段。  相似文献   

7.
1.3μm高增益偏振无关应变量子阱半导体光放大器   总被引:4,自引:2,他引:4  
马宏  易新建  陈四海 《中国激光》2004,31(8):71-974
采用低压金属有机化学气相外延法 (LP MOVPE)生长并制作了 1 3μm脊型波导结构偏振无关半导体光放大器 (SOA) ,有源区为基于四个压应变量子阱和三个张应变量子阱交替生长的混合应变量子阱 (4C3T)结构 ,压应变阱宽为 6nm ,应变量 1 0 % ,张应变阱宽为 11nm ,应变量 - 0 95 % ;器件制作成 7°斜腔结构以有效抑制腔面反射。半导体光放大器腔面蒸镀Ti3 O5/Al2 O3 减反 (AR)膜以进一步降低腔面剩余反射率至 3× 10 -4以下 ;在 2 0 0mA驱动电流下 ,光放大器放大的自发辐射 (ASE)谱的 3dB带宽大于 5 0nm ,光谱波动小于 0 4dB ,半导体光放大器管芯的小信号增益近 30dB ,在 12 80~ 1340nm波长范围内偏振灵敏度小于 0 6dB ,饱和输出功率大于 10dBm ,噪声指数 (NF)为 7 5dB。  相似文献   

8.
为了应对共封装光学(CPO)系统对硅光外置光源提出的高功率、低噪声、低功耗等要求,设计了一种波长在1310 nm附近的AlGaInAs多量子阱(MQW)高功率连续波(CW)分布反馈(DFB)激光器芯片。通过在有源层MQW的下方插入一层InGaAsP远场减小层,实现光模场向n型包层下移,减小远场发散角的同时降低了量子阱区的光限制因子和整体的光吸收损耗,制作的激光器可以实现高斜率效率、非致冷高温高功率工作。测试结果显示,该激光器在25℃下,阈值电流为20 mA,斜率效率为0.46 W/A,输出功率为173 mW@400 mA;当注入电流为300 mA时,激光器的水平和竖直发散角分别是15.2°和19.1°,边模抑制比大于55 dB,洛伦兹线宽小于600 kHz,相对强度噪声(RIN)小于-155 dB/Hz;在85℃高温下,激光器阈值电流为32 mA,输出功率达到112 mW@400 mA。  相似文献   

9.
为了降低2μm半导体激光器的阈值电流并提高器件的输出功率,设计了InGaAsSb/AlGaAsSb应变补偿量子阱结构,并利用SimLastip软件对器件进行了数值模拟.研究表明,在势垒中适当引入张应变可以改善量子阱的能带结构,提高对载流子的限制能力.当条宽为120 μm、腔长为1 000 μm时,采用应变补偿量子阱结构的激光器的阈值电流为91 mA,斜率效率为0.48 W/A.与压应变量子阱激光器相比,器件性能得到明显的改善.  相似文献   

10.
使用低压MOCVD生长应变InGaAs/GaAs 980 nm量子阱.研究了生长温度、生长速度对量子阱光致发光谱(PL)的影响.并将优化后的量子阱生长条件应用于980 nm半导体激光器的研制中,获得了直流工作下,阈值电流为19 mA,未镀膜斜率效率为0.6 W/A,输出功率在100 mW的器件.  相似文献   

11.
利用常压MOCVD技术在较低生长速率下生长出多种GaAs/AlGaAs多量子阱结构材料,利用低温PL谱和TEM对材料结构进行了表征。所得势阱和势垒结构厚度均匀平整,最窄阱宽为1.8nm。本研究表明,低速率(γ≤0.5nm/s)连续生长工艺能够避免杂质在界面富集,优于间断生长工艺,且在掺si n~+-GaAs衬底上所得量子阱发光强度高于掺Cr SI-GaAs衬底上的结果。  相似文献   

12.
传统激光器由于封装键合工艺的要求,需要较大的芯片电极面积,限制了器件尺寸进一步小型化。量子尺寸的衍射效应使量子阱半导体激光器的垂直结平面发散角较大,不利于光束整形,限制了半导体激光器的直接应用。为解决这些问题,采用加入模式扩展层的光波导结构,将垂直发散角由40°减小到22°左右;采用p与n电极同面的脊波导结构,可将激光器同载体直接烧结,无需键合工艺,减小了电极面积,进而缩小了芯片尺寸。25℃,60mA注入电流下进行测试,阈值电流Ith≤10mA,输出功率P约为55mW。  相似文献   

13.
利用新型全固源分子束外延技术 ,对 1 .5 5 μm波段的 In As P/ In Ga As P应变多量子阱结构的生长进行了研究。实验表明 ,较低的生长温度或较大的 / 束流比有利于提高应变多量子阱材料的结构质量 ,而生长温度对材料的光学特性有较大的影响。在此基础上生长了分别限制多量子阱激光器结构 ,制作的氧化物条形宽接触激光器实现了室温脉冲工作 ,激射波长为 1 5 63 nm,阈值电流密度为 1 .4k A/ cm2 。这是国际上首次基于全固源分子束外延的 1 .5 5 μm波段 In As P/ In Ga As P多量子阱激光器的报道  相似文献   

14.
808nm大功率连续半导体激光器研究   总被引:2,自引:1,他引:1  
利用金属有机化学气相淀积(MOCVD)技术,生长了AlGaInAs/AlGaAs分别限制压应变单量子阱材料,利用该材料制成3mm宽、填充因子20%的半导体激光器阵列(版型100μm/500μm,6个发光单元),通过腔面反射率设计确定了最佳反射率,采用CS载体标准封装。在输入电流8A、水冷19℃条件下测试,输出功率达到8.4W,阈值电流为1.8A,斜率效率为1.26W/A,功率转换效率为59.4%,波长为805.7nm,光谱半宽为1.8nm;输入电流12A时,输出功率达到13W,斜率效率为1.22W/A,功率转换效率为58.9%,波长为807.9nm,光谱半宽为2.0nm。  相似文献   

15.
低阈值高效率InAlGaAs量子阱808 nm激光器   总被引:1,自引:4,他引:1  
李建军  韩军  邓军  邹德恕  沈光地 《中国激光》2006,33(9):1159-1162
以Al0.3Ga0.7As/InAlGaAs/Al0.3Ga0.7As压应变量子阱代替传统的无应变量子阱作为有源区,实现降低808 nm半导体激光器的阈值电流,并提高器件的效率。首先优化设计了器件结构,并利用金属有机物化学气相淀积(MOCVD)进行了器件的外延生长。通过优化外延生长条件,保证了5.08 cm片内的量子阱(QW)光致发光(PL)光谱峰值波长均匀性达0.1%。对于条宽为50μm,腔长为750μm的器件,经镀膜后的阈值电流为81mA,斜率效率为1.22 W/A,功率转换效率达53.7%。变腔长实验得到器件的腔损耗仅为2 cm-1,内量子效率达90%。结果表明,压应变量子阱半导体激光器具有更优异的特性。  相似文献   

16.
根据应变理论及脊限深量子阱理论,对确定的In含量的InGaAs材料进行系统的计算,得到激射波长为1064nm激光器的应变量子阱的厚度,并采用金属有机化学气相淀积(MOCVD)方法生长该应变量子阱,实验结果与设计波长基本一致。  相似文献   

17.
采用气态源分子束外延(GSMBE)技术在InP衬底上生长发光波长为1.31μm的InAsP/InGaAsP应变补偿多量子阱和在GaAs衬底上生长GaAs/AlGaAs分布布拉格反射镜(DBR),并用直接键合技术将生长在InP基上的InAsP/InGaAsP应变补偿多量子阱结构组装到GaAs衬底上生长的DBR结构上,对其微结构和发光等特性进行了比较系统的研究.发现500~620℃的高温键合过程和后续的剥离工艺不仅没有引起量子阱发光效率的降低,反而由于键合过程中的退火改进了晶体质量,大大提高了量子阱的发光强度,其中620℃退火处理后的光致发光强度是原生样品的3倍.  相似文献   

18.
采用气态源分子束外延(GSMBE)技术在InP衬底上生长发光波长为1.31μm的InAsP/InGaAsP应变补偿多量子阱和在GaAs衬底上生长GaAs/AlGaAs分布布拉格反射镜(DBR),并用直接键合技术将生长在InP基上的InAsP/InGaAsP应变补偿多量子阱结构组装到GaAs衬底上生长的DBR结构上,对其微结构和发光等特性进行了比较系统的研究.发现500~620℃的高温键合过程和后续的剥离工艺不仅没有引起量子阱发光效率的降低,反而由于键合过程中的退火改进了晶体质量,大大提高了量子阱的发光强度,其中620℃退火处理后的光致发光强度是原生样品的3倍.  相似文献   

19.
设计并研制了由InAsP/InGaAsP应变补偿多量子阱有源层、SiO2/TiO2介质薄膜和GaAs/Al(Ga)As半导体分布布拉格反射镜(DBR)构成的垂直腔面发射激光器(VCSEL).采用直接键合技术实现InP基有源层与GaAs基DBR的晶片融合,并经过侧向湿法腐蚀定义电流限制孔径和沉积介质薄膜DBR等关键器件工艺,研制出InAsP/InGaAsP量子阱垂直腔面发射激光器,其阈值电流为13.5mA,单模激射波长为1288.6nm.  相似文献   

20.
60%电光效率高功率激光二极管阵列   总被引:4,自引:1,他引:3  
设计并制备了980 nm高量子效率和极低光损耗的激光二极管(LD)外延材料和器件.微通道封装1 cm激光二极管阵列在连续(CW)工作条件下最大电光效率达到60.0%,相应的斜率效率和输出光功率分别为1.1W /A和38.2 W.测试得到外延材料的内损耗系数和内量子效率分别为0.58 cm-1和91.6%.测试分析表明,器件电光效率的提高主要在于新型的InGaAs/GaAsP应变补偿量子阱和大光腔结构设计.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号