首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
本文研究大豆蛋白组成(不同配比7S和11S蛋白)对水包油型乳液乳化和界面吸附特性的作用规律。结果表明:自提7S和11S球蛋白基本处于天然未变性状态;随着大豆蛋白中11S含量的增加,乳液整体粒径分布增大,乳液乳化活性指数、ζ电位绝对值、油水界面蛋白浓度及含量均逐渐减少,乳滴絮凝和合并指数显著上升,乳液整体乳化活性及稳定性也随之降低;由乳化特性数据可知7S球蛋白对大豆蛋白整体乳化性能贡献大于11S;界面蛋白电泳结果表明所有亚基均可吸附至界面,且吸附的两类蛋白各亚基含量变化与各样品蛋白所占比重基本一致;乳液微结构随着11S球蛋白含量提升由清晰球状转变为无规则絮凝聚集态;整体上本实验所提大豆11S球蛋白在油水界面扩散、展开和重排速率高于7S球蛋白,不同11S含量的大豆蛋白界面重排速率均高于吸附展开速率,通过调整大豆蛋白组成可一定程度上调控蛋白在乳液界面吸附行为。  相似文献   

2.
为提高大豆肽纳米颗粒(SPN)Pickering乳液稳定性,以大豆肽聚集体为原料,采用超声法制备SPN,对超声时间进行了优化;在SPN体系中引入大豆分离蛋白(SPI)构建复合乳化剂,研究不同乳化剂质量浓度下SPI对SPN界面活性和乳化稳定性的影响。结果表明:选取超声时间10 min制备SPN;随着乳化剂质量浓度的增大,乳液粒径逐渐减小,当乳化剂质量浓度较低(5 mg/mL)时,乳液出现桥联,乳化剂质量浓度过高(30 mg/mL)时则出现絮凝;界面蛋白吸附率随着乳化剂质量浓度的增加呈现先升高后降低的趋势。在相同乳化剂质量浓度下,添加SPI的SPN乳液(SPI-SPN乳液)的粒径分布峰左移,其粒径、界面蛋白吸附率显著小于SPN乳液的;在储存过程中,SPN乳液粒径逐渐增大,SPI-SPN乳液粒径没有显著变化;SPI-SPN乳液的乳析指数小于相同乳化剂质量浓度的SPN乳液,当乳化剂质量浓度为30 mg/mL时,储存15 d SPI-SPN乳液未出现分层现象。综上,SPI可以提高SPN的界面活性和SPN乳液储存过程中的絮凝稳定性和分层稳定性。  相似文献   

3.
以β-伴大豆球蛋白(7S)和大豆球蛋白(11S)为乳化剂,添加表没食子儿茶素没食子酸酯(EGCG)制备O/W型乳液。通过测定复合物三维荧光光谱、热稳定性、粒径分布、ζ-电位及乳液液滴尺寸、色差、液滴形态和界面蛋白吸附等特性,探究EGCG与7S/11S蛋白的相互作用对乳液稳定性的影响。结果表明:EGCG使7S/11S蛋白荧光强度下降,蛋白三级结构展开,热稳定性降低。EGCG引起7S/11S蛋白的交联,使其蛋白颗粒粒径增大,在一定程度上提高ζ-电位。11S蛋白对上述变化更为敏感,提示11S蛋白与EGCG的互作程度强于7S蛋白。添加EGCG提高了两者蛋白乳液的a*、b*值,并显著减小液滴尺寸。当EGCG质量分数为0.02%时,7S/11S蛋白乳液的d4,3最小,而11S蛋白乳液液滴仍以大聚集体形式存在。EGCG明显改善了7S蛋白乳液的储藏分层情况,而对11S蛋白乳液无明显影响。此外,EGCG对7S/11S蛋白乳液界面蛋白整体亚基分布行为没有影响。  相似文献   

4.
超声及高压均质均可制备稳定的纳米乳液,通过高压均质制备的纳米乳液具有更强的稳定性,其平均粒径及PDI值较小,浊度和TSI低,乳化产率和β-胡萝卜素保留率高。两种纳米乳液的界面吸附蛋白亚基组成接近,主要由分子质量20 ku的11 S球蛋白碱性亚基及分子质量35 ku的11 S球蛋白酸性亚基组成。超声制备的纳米乳液界面蛋白含量较高,而纳米乳液体系黏度较低。  相似文献   

5.
采用紫外吸收光谱、荧光光谱、粒径电位、起泡性与乳化性及其稳定性测定等方法,探究黑米花青素(cyanidin-3-glucoside, C3G)对β-伴大豆球蛋白(β-conglycinin, 7S)和大豆球蛋白(glycinin, 11S)的相互作用对7S/11S蛋白结构及界面功能特性的影响。结果表明,C3G能够猝灭7S/11S蛋白的内源和外源荧光,使蛋白表面疏水性降低,并改变氨基酸微环境,诱导多肽链解折叠。在一定程度上,C3G使2种蛋白的平均粒径减小,ζ电位绝对值增大,起泡性和乳化性及其稳定性得到改善,但可能会引起7S(C3G>1 mg/mL)和11S(C3G>0.5 mg/mL)蛋白的广泛聚集。尽管C3G对11S蛋白改性效果更明显,但C3G-7S蛋白复合物的界面功能特性仍优于C3G-11S蛋白复合物。  相似文献   

6.
天然的7S球蛋白于p H=7.5通过谷氨酰胺内肽酶(E.C.3.4.21.19)的特异性酶切,结合超滤的方法(截留分子量为10 k Da),制得7S-核心区(7S-core)。该方法能去除7S球蛋白的α、α’亚基延展区,且不影响α、α’亚基的核心区及β亚基。本研究采用β-伴大豆球蛋白(7S)、7S酶解产物(7S-GE)及7S-核心区(7S-core)作为乳化剂,制备了三种乳液。研究了这三种乳液在改变p H、离子强度和储藏对乳液稳定性的影响,表征了乳液的zeta-电位,平均粒径和乳析指数,采用光学显微镜观察了乳液的微观结构。实验结果表明,7S经酶切后,形成的乳液的表面电位的绝对值减小。7S-core乳液的电位的绝对值明显小于7S及7S-GE乳液;同时,粒度及界面蛋白量显著增加。且失去延展区的7S制备的乳液在不同的p H、离子强度条件下聚集程度增加,放置后乳液的乳析指数增大,且显微结果表明乳液液滴发生聚合,乳化稳定性明显下降。本研究表明,延展区对于天然7S球蛋白的乳化能力和乳化稳定性具有重要的意义。  相似文献   

7.
分离纯化出7S、11S、SPI球蛋白,采用热处理三种球蛋白,考察热变性对蛋白乳化性及蛋白形成乳液的稳定性影响.结果表明,90℃热处理5min后SPI的乳化性达到最高,而在此变性条件下其组分7S的乳化性明显降低,11S的乳化性升高;热变性后SPI形成的乳液稳定性增强,7S乳液稳定性降低,11S乳液稳定性升高;热处理使蛋白发生不同程度变性,导致蛋白结构发生变化,蛋白乳化性改变,进而影响乳液性质.  相似文献   

8.
为了提高淀粉颗粒的乳化能力,以球磨-酯化复合改性槟榔芋淀粉为颗粒乳化剂,大豆油为油相,制备水包油型Pickering乳液.采用激光粒度仪、研究级正置显微镜、流变仪等对Pickering乳液外观、液滴粒径、显微形态及动态流变特性进行表征,考察淀粉颗粒质量浓度(1、5、10、20、30 mg/mL)和油相体积分数(10%、20%、30%、40%、50%)对乳液稳定性和流变特性的影响.研究发现:增加颗粒质量浓度导致乳化相体积增加,液滴粒径减小;随着油相体积分数的增加,乳化相体积增加,液滴粒径增大.当颗粒质量浓度为20 mg/mL,油相体积分数为40%时,乳液的乳析现象明显改善.球磨-酯化复合改性槟榔芋淀粉颗粒吸附在油/水界面,有效抵抗了液滴聚结,使乳液在储存30 d后仍表现出良好的稳定性.流变特性表明:乳液内部存在弹性凝胶网络结构,随着颗粒质量浓度和油相体积分数的增加,液滴间堆积变得更紧密,从而增加了乳液黏度和凝胶强度,使其抵抗形变能力增强.球磨-酯化复合改性槟榔芋淀粉颗粒具有良好的作为Pickering乳液稳定剂的潜力.  相似文献   

9.
依据蛋白质在酸热环境下能通过自组装形成纤维状聚集体的特性,首先利用荧光强度、透射电子显微镜等手段对β-乳球蛋白纳米纤维的形成过程进行表征,再通过界面流变仪对各阶段产物的界面吸附及界面黏弹模量进行分析,并在此基础上对其乳化行为进行研究。结果表明:纤维化过程中不同阶段产物具有不同的界面及乳化行为。随着纤维化转变进行,混合体系的界面吸附能力以及界面黏弹模量逐渐增加。不同阶段产物能形成粒径在8.5~10.5?μm之间的稳定乳液,且乳化能力随着纤维化转变而增强,但过度纤维化转变不利于蛋白质的乳化稳定性。  相似文献   

10.
将大豆皂苷添加至内水相(W1),大豆蛋白添加至外水相(W2),以玉米油为油相(O),两步乳化法制备W/O/W型多重乳液。探究乳液的整体稳定性、粒径特性、电位特性、微观结构、流变学特性、界面张力以及长期稳定性的变化情况。结果表明:随着时间的延长,乳液的稳定性动力指数值呈上升趋势,粒径集中在6 μm附近,大豆分离蛋白乳液的电位绝对值最大(-30.2 mV),该体系表现出假塑性的剪切稀化行为,大豆分离蛋白乳液的黏度值最大(0.029 Pa?s);15 d后,所有蛋白乳液都出现了一定的分层现象,大豆分离蛋白乳液的稳定性动力指数最小(21.51)。在1%蛋白质量分数下,大豆分离蛋白制备的W/O/W型乳液稳定性优于大豆11S和7S蛋白。  相似文献   

11.
张霞  王志勇  王维刚 《纺织器材》2021,(1):16-17,40
为保证转杯纺纱机给棉板和给棉罗拉对棉条具有一定的握持力,确保棉条被分梳辊匀速抓取并且不损伤棉纤维,介绍给棉板加压弹簧的结构、作用,分析影响其压力的因素并进行测试。指出:影响纺纱质量的主要因素是转杯、假捻盘、分梳辊以及给棉板与给棉罗拉对纱条产生的握持力;试验表明配置苏拉式纺纱器时,在加压片弹簧其他尺寸不能改变的条件下,厚度为A_0~(+0.2)mm的片弹簧对纱条产生最佳握持力,能保证纱条均匀输送给分梳辊抓取且分梳充分,从而消除因压力问题产生的条干不匀和粗细节,提高成纱质量。  相似文献   

12.
王志勇  张恒才 《纺织器材》2004,31(6):5-6,43
从理论和实验数据两方面分析讨论了弹性管材料及结构参数对其弹性的影响 ;同时讨论了加工工艺对弹性管弹性的影响 ,以及弹性管设计开发的方向  相似文献   

13.
微胶囊抗氧化剂对油脂稳定性作用的研究   总被引:15,自引:4,他引:11  
油脂的稳定性是保证油脂及富含油脂食品卫生质量的重要因素。研究了抗氧化剂BHA、TBHQ 和微胶囊抗氧化剂的抗氧化性能,证明后两者对油脂均有显著的抗氧化作用。但只有微胶囊抗氧剂在高温油炸下仍有较满意的抗氧化效果,能使油脂的使用寿命延长4倍以上。微胶囊抗氧剂可提高产品的热稳定性,还可通过各抗氧剂单体之间以及与金属离子螯合剂之间的协同增效作用,使油脂抗氧化能力显著提高,是应用于油脂及高温油炸食品的一种较安全、高效和成本较低的油脂抗氧剂。  相似文献   

14.
在低筋粉中分别添加不同比例的木瓜蛋白酶(PAP)、中性蛋白酶(NEP)、菠萝蛋白酶(BRP)制作饼干,以添加焦亚硫酸钠(SMS)和半胱氨酸(CYS)的饼干为对照,将比容、质构、色度作为评价指标,研究不同蛋白酶对饼干品质的改良作用及差异。试验结果表明,3种蛋白酶均能增大饼干比容、改良饼干质构,且PAP的效果最优。当添加量相同时,PAP对饼干品质的提升效果优于SMS与CYS,NEP与BRP效果弱于SMS对照组,但优于CYS对照组。面团流变、面粉溶剂保留率、面筋蛋白分子量分布研究表明蛋白酶添加改良饼干品质的主要原因是酶有效降低了面筋蛋白中谷蛋白大分子聚合体的含量,从而弱化了面筋,与SMS或CYS弱化面筋的方式存在本质差异。  相似文献   

15.
印刷滚筒采用斜齿轮传动是现代印刷机的基本要求,传动过程中必然在轴线方向产生一个分力,这个分力会使滚筒在轴向方向上产生一个较小的位移,即轴向串动。印刷过程中,滚筒的轴向位移量过大或过小,都会对印刷品产生不不良影响。同时,滚筒的轴向串动量是鉴定印刷机性能的重要指标之一。现代高速印刷机,对机械性能和滚筒的轴向串动量要求越来越高。为了解决在高速运转情况下,有效地掌握和控制滚筒轴向串动量,采用了激光多普勒测振仪,测试并分析各滚筒轴向串动量。以某四色印刷机作为测试对象,通过合理地在滚筒上选定测点,采集了的橡皮滚筒、压印滚筒及传纸滚筒的轴向振动信号,并通过求积分,得到各滚筒的在不同速度下的轴向串动量,并进行了分析,说明印刷速度越高,同种滚筒的轴向串动量越大,表明串动量的大小跟印刷速度有关。在相同速度下,橡皮滚筒与压印滚筒、传纸滚筒的串动量差距较大,表明滚筒串动量大小跟滚筒的装配结构有关,测试结果与滚筒的实际结构和装配情况一致,可作为控制串动量大小的依据。  相似文献   

16.
通过对各种功能纤维的性能进行分析,结合不同鞋类代用革材料的应用,提出了鞋类功能纤维的应用规律和开发思路。  相似文献   

17.
将Nisin按不同浓度的添加量添加到牛乳中制成酸奶,测定酸奶在发酵过程及4℃贮存过程中的酸度、粘度、pH、乳酸菌活菌数、霉菌以及酵母菌的变化趋势。结果表明,添加Nisin可有效抑制酸奶的后酸化,酸奶在保质期内酸度变化在68~78°T之间,pH在4.33~4.53之间,乳酸菌活菌数在2.1×106~2.08×108CFU/mL之间。添加Nisin延长了酸奶的发酵时间,酸奶在保质期内粘度较低,在抑制霉菌和酵母方面无差别。Nisin含量为60IU/mL时对酸奶品质影响不明显,可有效抑制酸奶后酸化进程,延长酸奶保质期。  相似文献   

18.
研究了不同pH和离子强度条件下,壳聚糖对大豆球蛋白(11S)聚集情况的影响作用。研究发现:添加壳聚糖可以显著抑制大豆球蛋白(11S)在其等电点区域(pH5.0)的聚集情况,并且通过粒度与ζ-电位的测试发现壳聚糖与大豆球蛋白(11S)的作用方式是静电相互作用。在0.1wt%壳聚糖存在时,大豆球蛋白(11S)溶液的等电点从pH5.09改变为pH7.81。而NaCl的存在会屏蔽壳聚糖的正电荷,从而减弱静电相互作用,使体系的聚集情况增加。在一定的pH和离子强度下,壳聚糖对大豆球蛋白的热诱导聚集同样有抑制作用。  相似文献   

19.
影响辣椒碱稳定性因素的研究   总被引:1,自引:0,他引:1  
研究了不同调味料和不同温度处理对辣椒碱稳定性的影响。试验结果表明:高盐度对辣椒碱破坏性较大,而高浓度的油则有利于辣椒碱的保存。在中性条件下辣椒素最稳定,偏酸或偏碱性越强,越不利于辣椒碱。温度越高对辣椒碱的破坏性越大。  相似文献   

20.
纤维素酶对大曲酒风味物质影响的探讨   总被引:1,自引:0,他引:1  
探讨了固态发酵工艺中纤维素酶对大曲酒中醛、醇、有机酸、酯等风味物质的影响.结果表明,发酵酒醅中纤维素酶添加量为10FPU/kg(糟)时,所产酒的醛类物质、杂醇油含量最低,而四大乙酯及丙酸乙酯含量较高,对应酸的含量也高.当纤维素酶添加量为30FPU/kg~50FPU/kg(糟)时,所产酒的风格突出、口感较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号