首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glasses from the system BaO–SrO–ZnO–SiO2 with different Ba/Sr ratios were characterized regarding crystallization behavior as well as the thermal expansion of almost fully crystallized glasses. Depending on the SrO concentration, different crystalline phases precipitate from the glasses. Those with low SrO concentrations precipitate crystals with the structure of low‐temperature BaZn2Si2O7 as one of the major phases. Higher SrO concentrations cause the formation of Ba1?xSrxZn2Si2O7 solid solutions with the structure of high‐temperature BaZn2Si2O7. Both, the low‐ as well as the high‐temperature phase exhibit very different thermal expansion behaviors ranging from a very high coefficient of thermal expansion in the case of the low‐temperature phase to a very low coefficient of thermal expansion in the case of the high‐temperature phase. The glass‐ceramics with the highest and that with the lowest coefficient of thermal expansion measured between 100°C and 800°C show a difference of 7.9 × 10?6 K?1, which is caused solely by a substitution of BaO with SrO. In contrast, the maximum variation in the thermal expansion of the glasses was only 1.5 × 10?6 K?1. The microstructure of sintered and afterward crystallized glass powders was analyzed via scanning electron microscopy and showed crack‐free samples with low porosity.  相似文献   

2.
Glasses in the Na2O–CaO–SrO–ZnO–SiO2 system have previously been investigated for suitability as a reagent in Al‐free glass polyalkenoate cements (GPCs). These materials have many properties that offer potential in orthopedics. However, their applicability has been limited, to date, because of their poor strength. This study was undertaken with the aim of increasing the mechanical properties of a series of these Zn‐based GPC glasses by doping with nitrogen to give overall compositions of: 10Na2O–10CaO–20SrO–20ZnO–(40?3x)SiO2xSi3N4 (x is the no. of moles of Si3N4). The density, glass‐transition temperature, hardness, and elastic modulus of each glass were found to increase fairly linearly with nitrogen content. Indentation fracture resistance also increases with nitrogen content according to a power law relationship. These increases are consistent with the incorporation of N into the glass structure in threefold coordination with silicon resulting in extra cross‐linking of the glass network. This was confirmed using 29Si MAS‐NMR which showed that an increasing number of Q2 units and some Q3 units with extra bridging anions are formed as nitrogen content increases at the expense of Q1 units. A small proportion of Zn ions are found to be in tetrahedral coordination in the base oxide glass and the proportion of these increases with the presence of nitrogen.  相似文献   

3.
The glass–ceramics containing a rarely achievable nanocrystalline SrIINbIVO3 phase in the 53.75SiO2–18.25K2O–9Bi2O3–9SrO–9Nb2O5–0.5CeO2–0.5Eu2O3 (mol%) glass system were prepared by the melt‐quench technique followed by a two‐stage controlled heat treatment. The unusual oxidation state of Nb in SrIINbIVO3 crystal is 4+ and upon heat treatment of the samples at lower temperature of 500°C for several hours, the glass composition and chemical environment around Nb ions played a key role for the formation of SrIINbIVO3 in the glass–ceramics. The microstructure of the glass–ceramics was studied using TEM and FESEM. The TEM images advocate 10–40 nm crystallite size of SrIINbIVO3. FTIR study confirms that all the samples consist of SiO4, BiO3, BiO6, and NbO6 structural units. The refractive index at different wavelengths was found to vary in the range 1.7105–1.7905 and increase with increase in heat‐treatment time. The luminescence spectra of Eu3+‐doped glass and glass–ceramics were recorded at 465 nm excitation wavelength and the luminescence intensity is found to be increased with heat‐treatment time due to increase in crystallinity. The high intensity ratio of 5D07F2 to 5D07F1 indicates that the Eu3+‐doped nanocrystalline SrIINbIVO3 glass–ceramics are promising candidate materials as red‐light source.  相似文献   

4.
Discharged energy properties of PbO–SrO–Na2O–Nb2O5–SiO2 glass‐ceramics with crystallization time from 1 to 1000 min were investigated by measuring their hysteresis loops (described as quasi‐static measuring method) and pulse‐discharge current‐time curves (described as dynamic measuring method). The results show the same trend for both measuring methods: With the increment of crystallization time, the discharged energy density increases gradually, while the energy efficiency decreases. The highest energy efficiencies were obtained in the sample with crystallization time of 1 min, which are 96.3% and 82.4%, corresponding quasi‐static and dynamic measurement, respectively. The reduction of energy efficiency with crystallization time is attributed to combined effect of ferroelectric polarization and interfacial polarization, and part of the corresponding energy could not release in the pulse‐discharge process.  相似文献   

5.
Sm3+‐doped glass 13SrO–2Bi2O3–5K2O–80B2O3 was fabricated by the conventional melt‐quenching technique. The glass‐ceramics were obtained by heating the as‐prepared glasses in air atmosphere at selected temperatures 550°C, 600°C, 615°C, and 650°C, respectively. The luminescence spectra of both Sm3+ and Sm2+ were detected in the ceramic heated at 650°C where crystalline phase is formed. The as‐prepared glass and the ceramics heated at 550°C, 600°C, and 615°C show only the emission due to Sm3+. In the sample heated at 650°C in air atmosphere, however, part of Sm3+ ions was converted to Sm2+, giving rise to sharp emission lines which are characteristic of Sm2+ in crystalline state. It is suggested that Sm2+ ions are located at Sr2+ site in the ceramic while Sm3+ ions are located at Bi3+ sites. The Sm2+‐doped glass‐ceramic has a high optical stability because the fluorescence intensity decreases by only about 8% of its initial value upon excitation at 488 nm Ar+ laser.  相似文献   

6.
Transparent (Sr0.5Ba0.5)Nb2O6 (SBN50) nanocrystallite‐precipitated phosphate glass‐ceramics were prepared by a conventional glass‐ceramic process. x(SrO–BaO–2Nb2O5) ? (100–4x)P2O5 (xSBNP) glasses with a refractive index of 1.9–2.0 exhibited high water resistance owing to the presence of Q0 and Q1 phosphate units. Both bulk and surface crystallization of the SBN50 phase were observed in 20SBNP and 21SBNP glass‐ceramics. Although the nominal content of SBN50 crystals in the 21SBNP glass was larger than that in the 20SBNP glass, the latter exhibited better crystallinity of SBN50 and a higher number density of precipitated SBN nanocrystallites. By tuning the two‐step heat‐treatment and the chemical composition, transparent SBN50‐precipitated glass‐ceramics were successfully obtained. Given that no remarkable increase of the relative dielectric constants was observed after crystallization of the SBN50 nanocrystallites, it is postulated that the relative dielectric constant of the bulk is mainly governed by the amorphous phosphate region, and that the contribution of precipitation of the SBN50 nanocrystallites to the dielectric constant is not very significant in this system.  相似文献   

7.
With the aid of the transient hot‐wire method, the thermal conductivity of molten B2O3, B2O3–SiO2, Na2O–SiO2, and Na2O–B2O3 systems was measured along with their temperature and composition. It was observed that the thermal conductivity of pure B2O3 increased with temperature, until about 1400 K, and then decreased subsequently. Using the MAS‐NMR, 3Q‐MAS, and Raman spectroscopy, the structure of B2O3 and SiO2 in the B2O3–SiO2 system was confirmed. Findings show that an addition of B2O3 into the pure SiO2 system causes a significant decrease in thermal conductivity, due to the formation of boroxol rings. The thermal conductivity of the Na2O–SiO2 system was measured and its phonon mean free path was calculated. In addition, a positive linear relation between viscosity and thermal conductivity was observed. In the Na2O–B2O3 system, it was found that a change in the relative fraction of 4‐coordinated boron has an influence on the thermal conductivity when the concentration of Na2O is between 10 and 30 mol%, in which case the tetraborate unit is dominant.  相似文献   

8.
Y–Si–O–N quaternary oxynitrides (Y5Si3O12N, Y4Si2O7N2, YSiO2N, Y2Si3O3N4, and Y3Si5ON9) are recognized as important secondary grain‐boundary phases in silicon nitride and believed to have important impacts on the high‐temperature mechanical properties and thermal conductivity of Si3N4 ceramic. In this work, equilibrium crystal structures, theoretical mechanical properties (second‐order elastic constants, polycrystalline bulk modulus, shear modulus, Young's modulus, and Vickers hardness) of the five quaternary phases are calculated using first‐principle total energy calculations. Meanwhile, temperature dependence of thermal conductivities of all five compounds is obtained based on Debye–Clarke model and Slack equation. On the basis of theoretical prediction, we establish the relationship between the componential (cation/anion or cation/cation ratios) and structural characteristics (bonding configurations) and mechanical/thermal properties. Our results are expected to provide helpful guidelines to improve the performances of Y–Si–O–N ceramics, and further guide the optimization of mechanical and thermal properties of Si3N4 by properly tailoring the secondary grain‐boundary phases.  相似文献   

9.
We have grown hierarchical structure of bismuth oxycloride (BiOCl) on SrO‐Bi2O3‐B2O3 (SBBO) transparent glass‐ceramic. SBBO glass‐ceramics were fabricated via conventional melt‐quenching technique while BiOCl was grown by etching the glass via HCl. Enhanced visible light driven photocatalytic activity and increasing hydrophobic feature were observed on BiOCl grown SBBO than as‐quenched SBBO glass‐ceramics. Contact angle analysis showed maximum contact angle of 130.7° on the surface of most BiOCl grown SBBO glass‐ceramic. Furthermore, under visible light illumination water contact angle decreased from 130.7° to 30.8°. Such photo‐induced hydrophilicity and catalytic performance in translucent glass‐ceramics lead self‐cleaning applications.  相似文献   

10.
《Ceramics International》2021,47(20):28252-28259
Oxide ceramics are considered as promising high temperature solar absorber materials. The major aim of this work is the development of a new solar absorber material with promising characteristics, high efficiency and low-cost processing. Hence, this work provides a comparative and inclusive study of densification behavior, microstructure features, thermal emissivity and thermal conductivity values of the two new high temperature solar absorbers of ZrO2/Fe2O3 and Al2O3/CuO ceramics. Ceramic composites of ZrO2/(10–30 wt%) Fe2O3 and Al2O3/(10–30 wt%) CuO were prepared by pressureless sintering method at a temperature of 1700 °C/2hrs. Identification of the solar to thermal efficiency of the composites was evaluated in terms of their measured thermal emissivity. Thermal efficiency and heat transfer homogeneity were investigated in terms of thermal conductivity and diffusivity measurement. The results showed that both composites exhibited comparable densification behavior, homogenous and harmonious microstructure. However, Al2O3/10 wt% CuO composite showed higher thermal and solar to thermal efficiencies than ZrO2/Fe2O3 composites. It gave the lowest and the best thermal emissivity of 0.561 and the highest thermal conductivity of 15.4 W/m. K. These values proved to be the best amongst all those of the most known solar absorber materials made from the expensive SiC and AlN ceramics. Thus, Al2O3/CuO composites have succeeded in obtaining outstanding properties at a much lower price than its other competitive materials. These results may strongly identify Al2O3/CuO composites as promising high-temperature solar absorber materials instead of ZrO2 and the other carbide and nitride ceramics.  相似文献   

11.
The effect of Na2O and temperature on the thermal conductivity of the Na2O–B2O3 binary system has been measured using the hot‐wire method to examine the relationship between the thermal conductivity and structure in high‐temperature melts. The thermal conductivity of the binary melt is measured from 1173 to 1473 K in the fully liquid state. The thermal conductivity slightly increases with Na2O content up to 20 wt%. Above 20 wt% Na2O, the thermal conductivity decreases with increasing Na2O. The network structure of molten glass was analyzed using Fourier transform infrared (FTIR), Raman spectroscopy, and XPS. The FTIR analysis shows that 3‐D complex borate structures, such as tri‐, tetra‐, and pentaborate are made by [BO4] tetrahedral units interconnected with 2‐D structure boroxol rings in the low Na2O region. Above 20 wt% Na2O content, nonbridged oxygen in [BO2O?] units and diborate groups increase with increase in Na2O. The same tendency is shown by the Raman spectroscopy and XPS analyses. The Raman analysis shows that boroxol rings disappeared with large [BO4] groups, such as tri‐, tetra‐, and pentaborate structures, which increase at low Na2O content. Isolated diborate groups and nonbridged oxygen in [BO2O?] units increase at high Na2O content. It can be inferred that single structure units, such as isolated diborate groups, interfere with conduction. The XPS analysis results show that free oxygen produced by the interconnection of Na2O in the borate structure does not cause significant changes to O2? in the low Na2O region, but increases the Oo and decreases the O?. Above 20 wt% Na2O, O? slightly increases and Oo shows a decreasing trend.  相似文献   

12.
Using the transient hot‐wire method, the thermal conductivity properties of the molten Li2O–B2O3 and K2O–B2O3 systems were measured. The thermal conductivity increases with decreasing the temperature due to the borate structure change. In addition, calculations of the one‐dimensional Debye temperature and the phonon mean free paths as a function of temperature of the alkali borate systems were made. At a fixed temperature of 1273 K, the effect of the alkali oxide concentration on the thermal conductivity was evaluated. Within a range of 10–30 mol% Li2O (or K2O), a positive relationship between the thermal conductivity and 4‐coordinate boron was obtained. However, below 10 mol% Li2O (or K2O), the change in the intermediate‐range order of the borate structure had a more dominant effect on the thermal conductivity. Finally, the effect of cations on the thermal conductivity in the various molten R2O–B2O3 (R=Li, Na and K) systems was considered. Depending on the type of cation, the change in the ionization potential had an effect on the thermal conductivity and also resulted in a change in the bond strength.  相似文献   

13.
Glass formation behavior of the TeO2–WO3–Na2O system was studied by using conventional melt‐quenching technique. A wide glass formation range was determined for the first time in the literature and thermal, physical, and structural characterization of sodium‐tungsten‐tellurite glasses were realized using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy techniques. Glass transition (Tg) and crystallization (Tc/Tp) temperatures, glass stability (?T), density (ρ), molar volume (VM), oxygen molar volume (VO), and oxygen packing density (OPD) values and structural transformations in the glass network were investigated according to the equimolar substitution of TeO2 by Na2O+WO3 and changing Na2O or WO3 at constant TeO2.  相似文献   

14.
In this study, we have investigated the use of silver cation as nucleating agent in germanotellurite glass matrix of compositions (100?x) [70TeO2–10GeO2–10Nb2O5–10K2O]–xAg2O (x=0‐6 mol%), in order to promote bulk crystallization. Density measurements, differential scanning calorimetry, X‐ray diffraction, UV‐Vis, and Raman spectroscopies have been performed to study the crystallization process. We have observed bulk crystallization of a unique noncentrosymmetric phase, K[Nb1/3Te2/3]2O4.8, which has been investigated for its second‐order optical activity. Transparent to translucent glass‐ceramics have been successfully tailored under thermal treatment and second harmonic generation signals were recorded on the glass‐ceramic samples as a function of their synthesis procedure. It is suggested that the second‐order optical properties observed are strongly related to the organization of crystallites within phase‐separated domains.  相似文献   

15.
A luminescent Eu, Dy: SrAl2O4 glass‐ceramics with high transparency in the visible region was successfully synthesized using the frozen sorbet technique with the control of O2 partial pressure () for the oxidation of Eu2+ ions. The glass‐ceramics include Eu2+, Eu3+, and Dy3+ ions, and thus exhibits three characteristic types of emission bands, 4f–5d at around 520 nm (Eu2+ ions), 4f–4f at 610 nm (Eu3+ ions), and 480 nm (Dy3+ ions). The Eu, Dy: SrAl2O4 glass‐ceramics provide remarkable long‐persistent luminescence under dark condition. The glass‐ceramics also exhibits color‐changing luminescence in the visible region based on their remarkable light storage properties. The luminescent Eu, Dy: SrAl2O4 glass‐ceramics using the frozen sorbet technique with control of are promising materials for application in novel photonic and light storage materials.  相似文献   

16.
The sequence of crystallization in a recrystallizable lithium silicate sealing glass‐ceramic Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO was analyzed by in situ high‐temperature X‐ray diffraction (HTXRD). Glass‐ceramic specimens have been subjected to a two‐stage heat‐treatment schedule, including rapid cooling from sealing temperature to a first hold temperature 650°C, followed by heating to a second hold temperature of 810°C. Notable growth and saturation of Quartz was observed at 650°C (first hold). Cristobalite crystallized at the second hold temperature of 810°C, growing from the residual glass rather than converting from the Quartz. The coexistence of quartz and cristobalite resulted in a glass‐ceramic having a near‐linear thermal strain, as opposed to the highly nonlinear glass‐ceramic where the cristobalite is the dominant silica crystalline phase. HTXRD was also performed to analyze the inversion and phase stability of the two types of fully crystallized glass‐ceramics. While the inversion in cristobalite resembles the character of a first‐order displacive phase transformation, i.e., step changes in lattice parameters and thermal hysteresis in the transition temperature, the inversion in quartz appears more diffuse and occurs over a much broader temperature range. Localized tensile stresses on quartz and possible solid‐solution effects have been attributed to the transition behavior of quartz crystals embedded in the glass‐ceramics.  相似文献   

17.
Carbon–carbon (C–C) composites are ideal for use as aerospace vehicle structural materials; however, they lack high‐temperature oxidation resistance requiring environmental barrier coatings for application. Ultra high‐temperature ceramics (UHTCs) form oxides that inhibit oxygen diffusion at high temperature are candidate thermal protection system materials at temperatures >1600°C. Oxidation protection for C–C composites can be achieved by duplicating the self‐generating oxide chemistry of bulk UHTCs formed by a “composite effect” upon oxidation of ZrB2–SiC composite fillers. Dynamic Nonequilibrium Thermogravimetric Analysis (DNE‐TGA) is used to evaluate oxidation in situ mass changes, isothermally at 1600°C. Pure SiC‐based fillers are ineffective at protecting C–C from oxidation, whereas ZrB2–SiC filled C–C composites retain up to 90% initial mass. B2O3 in SiO2 scale reduces initial viscosity of self‐generating coating, allowing oxide layer to spread across C–C surface, forming a protective oxide layer. Formation of a ZrO2–SiO2 glass‐ceramic coating on C–C composite is believed to be responsible for enhanced oxidation protection. The glass‐ceramic coating compares to bulk monolithic ZrB2–SiC ceramic oxide scale formed during DNE‐TGA where a comparable glass‐ceramic chemistry and surface layer forms, limiting oxygen diffusion.  相似文献   

18.
A widely adopted approach to form matched seals in metals having high coefficient of thermal expansion (CTE), e.g. stainless steel, is the use of high CTE glass‐ceramics. With the nucleation and growth of Cristobalite as the main high‐expansion crystalline phase, the CTE of recrystallizable lithium silicate Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO glass‐ceramic can approach 18 ppm/°C, matching closely to the 18 ppm/°C–20 ppm/°C CTE of 304L stainless steel. However, a large volume change induced by the α‐β inversion between the low‐ and high‐ Cristobalite, a 1st order displacive phase transition, results in a nonlinear step‐like change in the thermal strain of glass‐ceramics. The sudden change in the thermal strain causes a substantial transient mismatch between the glass‐ceramic and stainless steel. In this study, we developed new thermal profiles based on the SiO2 phase diagram to crystallize both Quartz and Cristobalite as high expansion crystalline phases in the glass‐ceramics. A key step in the thermal profile is the rapid cooling of glass‐ceramic from the peak sealing temperature to suppress crystallization of Cristobalite. The rapid cooling of the glass‐ceramic to an initial lower hold temperature is conducive to Quartz crystallization. After Quartz formation, a subsequent crystallization of Cristobalite is performed at a higher hold temperature. Quantitative X‐ray diffraction analysis of a series of quenched glass‐ceramic samples clearly revealed the sequence of crystallization in the new thermal profile. The coexistence of two significantly reduced volume changes, one at ~220°C from Cristobalite inversion and the other at ~470°C from Quartz inversion, greatly improves the linearity of the thermal strains of the glass‐ceramics, and is expected to improve the thermal strain match between glass‐ceramics and stainless steel over the sealing cycle.  相似文献   

19.
Top‐seed infiltration and growth technique (TSIG) is proposed to fabricate Y–Ba–Cu–O (YBCO) single‐grain superconductor nano‐composites, in which a solid source composition of nano‐Y2O3 + BaCuO2 and a liquid source composition of Y2O3 + 10BaO + 16CuO are employed. As can be seen, this novel technique uses just one source of precursor powder of BaCuO2, so it is more simplified and efficient. Microstructural observation indicates that fine Y2BaCuO5 (Y‐211) inclusions with a size from dozens of nanometers to about one hundred nanometers are successfully introduced in YBa2Cu3O7?x (Y‐123) superconducting matrix, which can act as more effective pinning centers for improving the bulk performance. Superconducting property measurement shows that, a maximum trapped field of 0.36044 T is present at the center of the sample after magnetization by a permanent magnet (= 0.5 T). These results prove that our proposed TSIG technique is a practical method for fabricating YBCO bulk superconductor nano‐composites with high performance.  相似文献   

20.
The effects of Nd2O3 content (0–12 wt %) on crystalline phases, microstructure, and chemical durability of barium borosilicate glass‐ceramics belonging to SiO2–B2O3–Na2O–BaO–CaO–TiO2–ZrO2–Nd2O3 system were studied. The results show that the glass‐ceramics with 2–6 wt% of Nd2O3 possess mainly zirconolite and titanite phases along with a small amount baddeleyite phase in the bulk. Calcium titanate appears when the Nd2O3 content increases to 8 wt%, and the amount of quadrate calcium titanate crystals increases with further increasing content of Nd2O3. For the glass‐ceramics with 6 wt% Nd2O3 (Nd‐6), Nd elements homogeneously distribute in zirconolite, titanite, and residual glass phases. There is a strong enrichment of Nd in calcium titanate crystals for the sample with 10 wt% Nd2O3. The viscosity of Nd‐6 glass is about 49 dPa·s at 1150°C. Moreover, Nd‐6 glass‐ceramics show the lower normalized leaching rates of B (LRB), Ca (LRCa), and Nd (LRNd) when compared to that of the sample with 8 wt% Nd2O3. After 42 days, LRB, LRCa, and LRNd of the Nd‐6 glass‐ceramics are about 6.8 × 10?3, 1.6 × 10?3, and 4.4 × 10?6 g·m?2·d?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号