首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lead‐free MnO‐doped 0.955K0.5Na0.5NbO3‐0.045Bi0.5Na0.5ZrO3 (Abbreviated as KNN‐0.045BNZ) ceramics have been prepared by the conventional solid‐state sintering method in reducing atmosphere ( = 1 × 10?10 atm) and air. For ceramics sintered in reducing atmosphere, only Mn2+ ions exist in ceramics who preferentially occupy the cation vacancies in A‐site at = 0.2‐0.4, whereas Mn2+ ions substitute for Zr4+ ions in B‐site to form defects () at > 0.4. For ceramics sintered in air, mixed Mn2+, Mn3+, and Mn4+ ions coexist here. The Mn2+ ions preferentially occupy the cation vacancies in A‐site at = 0.2‐0.4 and then Mn2+ ions substitute for Zr4+ ions in B‐site at > 0.4. Meanwhile, the Mn3+ ions and Mn4+ ions substitute for Nb5+ ions in B‐site to form defects () at = 0.2‐0.8. The (, , and ) dipolar defects show a positive dipolar defect contribution (DDC) to the , whereas the dipolar defects () show a negative DDC to the . The dipolar defects ( ‐ and ) can help improve the temperature stability of . The 0.4% MnO‐doped KNN‐0.045BNZ ceramics sintered in reducing atmosphere show excellent piezoelectric constant d33 = 300 pC/N and 0.2% MnO‐doped KNN‐0.045BNZ ceramics sintered in air possess optimal piezoelectric constant d33 = 290 pC/N.  相似文献   

2.
In this work, the nonstoichiometric 0.99Bi0.505(Na0.8K0.2)0.5‐xTiO3‐0.01SrTiO3 (BNKST(0.5‐x)) ceramics with x=0‐0.03 were synthesized by conventional solid‐state reaction method. The composition‐induced structural transitions were investigated by Raman spectra, dielectric analyses, and electrical measurements. It is found that the relaxor phase can be induced through the modulation of the (Na, K) content. The (Na, K) deficiency in BNKST(0.5‐x) ceramics favors a more disordered local structure and can result in the loss of long‐range ferroelectricity. The x=0.015 critical composition possesses relatively high positive strain Spos of 0.42% and large signal piezoelectric constant d33* of 479 pm V?1 at 6 kV mm?1, along with the good temperature (25‐120°C) and frequency (1‐20 Hz) stability. The recoverable large strain responses in nonstoichiometric ceramics can be attributed to the reversible relaxor‐ferroelectric phase transition, which is closely related to the complex defects (, , and ) and the local random fields. This work may be helpful for the exploration of high‐performance NBT‐based lead‐free materials by means of A‐site compositional modification.  相似文献   

3.
Lead‐free MnO‐doped 0.955K0.5Na0.5NbO3‐0.045Bi0.5Na0.5ZrO3 (abbreviate as KNN‐0.045BNZ) ceramics have been prepared by a conventional solid‐state sintering method in reducing atmosphere. The MnO addition can suppress the emergence of the liquid phase and improve the homogenization of grain size. All ceramics sintered in reducing atmosphere show a two‐phase coexistence zone composed of rhombohedral (R) and tetragonal (T) phase. MnO dopant results in the content increase in R phase and slight increase in Curie temperature TC. For KNN‐0.045BNZ ceramics, Mn2+ ions preferentially occupy the cation vacancies in A‐site to decrease oxygen vacancy concentration for 0.2%‐0.4% MnO content, whereas Mn2+ ions substitute for Zr4+ ions in B‐site to form oxygen vacancies at  0.5. The defect dipole is formed at the moderate concentration from 0.5 to 0.6, which can provide a preserve force to improve the temperature stability of piezoelectric properties for kp and . The Mn0.4 ceramics show excellent electrical properties with quasistatic piezoelectric constant d33 = 300 pC/N, electromechanical coupling coefficient kp = 51.2%, high field piezoelectric constant  = 430 pm/V (at Emax = 25 kV/cm) and TC = ~345°C, insulation resistivity ρ  =  6.13 × 1011 Ωcm.  相似文献   

4.
The impact of the (Ba + Sr)/Ti (A/B) ratio on the microwave‐tunable characteristics of diffuse phase transition (DPT) ferroelectric Ba0.6Sr0.4TiO3 (0.6‐BST) ceramics was investigated. The reduction in the lattice constant with increasing nonstoichiometry was attributed to introduced partial Schottky defects, i.e., and . The magnitude of the dielectric constant, ε′, at room temperature in the absence of an applied electric field was governed by the shift in the dielectric maximum temperature, Tm, because Tm was close to room temperature for the 0.6‐BST. The dielectric loss, tanδ, diminished as the ε′ decreased for 0.98≤A/B≤1.05, while the tanδ was much higher for A/B=0.95 having the greatest A‐site vacancy loading. The negatively charged and were mainly compensated by oxygen vacancies and likely partly compensated by holes, h?, which contributed to the electrical conduction. The tunability, T, at 100 MHz was almost constant at 20%–25% for A/B≥1.00 despite the reduction of the ε′, whereas T decreased for A/B<1.00 to ca. 10% for A/B=0.95 having the greatest A‐site vacancy loading. The results implied that the for larger A/B values was more efficient in generating nucleation sites in the polar nanoregions (PNRs) than the for smaller A/B values, thereby providing greater dipole polarization. Consequently, the figure of merit, FOM, reached its maximum of 250 at A/B=0.9875, which was ca. 155% higher than that of the stoichiometric BST.  相似文献   

5.
Lead‐free piezoelectric ceramics of (K, Na)NbO3 modified by Li, Ta, and Sb (KNN‐LTS) have been widely investigated recently. In this research, this optimized composition of KNN‐LTS ceramics near polymorphic phase transition is explored according to the linear combination rule (LCR) for the first time. Changing with the compositions monotonically, remanent polarization (Pr) decreased monotonically, whereas permittivity () increased similarly. The increase in either or Pr initially enhances piezoelectric coefficient d33 before reducing it because d33 can be improved by and Pr. The optimal composition of (Na0.52K0.4415Li0.0385)(Nb0.8735Ta0.064Sb0.0625)O3, predicted by LCR, exhibits the excellent electric properties of d33 = 359 pC/N, kp = 42%, thus suggesting that the LCR effectively predicts the electric properties of the KNN‐LTS ceramics.  相似文献   

6.
Some of the renewed interest in transition metal diborides (MB2, = Ti/Zr/Hf) arises from their potential use as matrices in ultrahigh‐temperature ceramic matrix composites (UHTCMCs). Crucial to the understanding of such composites is the study of the fiber/matrix interfaces, which in turn requires a deep knowledge of the surface structures and the thermodynamics of the matrix material. Here we investigate the surface stability of MB2 compounds by first‐principles calculations. Five surfaces are stabilized when going from a M‐rich to a B‐rich environment, respectively (0001)M, (100)M, (101)B(M), (113)M and (0001)B, with the highly stable (100)M, (101)B(M) and (113)M surfaces being discussed here for the first time. The mechanism behind the surface stability is analyzed in terms of cleavage energy, surface strain and surface bonding states. Our results provide important information for a better understanding of the most likely surfaces exposed to the fibers in UHTCMCs, thereby for the construction of reliable interfaces and ultimately UHTCMCs models.  相似文献   

7.
Lead‐free 0.955K0.5Na0.5Nb1‐zTazO3‐0.045Bi0.5Na0.5ZrO3+0.4%MnO ceramics (abbreviated as KNNTaz‐0.045BNZ+0.4Mn) were prepared by a conventional solid‐state sintering method in a reducing atmosphere (oxygen partial pressure of 1 × 10?10 atm). All ceramics with a pure perovskite structure show the two‐phase coexistence zone composed of rhombohedral and tetragonal phase. Ta5+ ions substitute for Nb5+ ions on the B‐site, which results in a decrease in the R phase fraction in the two‐phase coexistence zone. The R‐T phase transition temperature moves to room temperature due to the substitution of Nb5+ ions by Ta5+ ions. A complex domain structure composed of small nano‐domains (~70 nm) formed inside large submicron domains (~200 nm) exists in KNNTa0.02‐0.045BNZ+0.4Mn ceramics, which can induce a strong dielectric‐diffused behavior and improve the piezoelectric properties. The temperature stability for the reverse piezoelectric constant for the KNNTaz‐0.045BNZ+0.4Mn ceramics can be improved at = 0.02. Excellent piezoelectric properties (d33 = 328 pC/N, and  = 475 pm/V at Emax = 20 kV/cm) were obtained for the KNNTa0.02‐0.045BNZ+0.4Mn ceramics.  相似文献   

8.
The ion valence state, phase composition, microstructure, and microwave dielectric properties of Sr(1?1.5x)CexTiO3 (x = 0.1–0.67, SCT) ceramics were systematically investigated. Sr(1?1.5x)CexTiO3 ceramics were produced with gradual structural evolution from a cubic to a tetragonal and turned to an orthorhombic structure in the range of 0.1 ≤ x ≤ 0.67. Above a critical Ce proportion (x = 0.4), microstructural changes and normal grain growth initially occurred. On the basis of chemical analysis results, the reduction of Ti4+ ions was hastened by tetravalent ions (Ce4+). By contrast, this reduction was inhibited by trivalent ions (Ce3+). The observed dielectric behavior was strongly influenced by phase composition, oxygen vacancies (), and defect dipoles, namely, () and (). Temperature stable ceramics sintered at 1350°C for 3 h in air yielded an intermediate value of dielectric constant (εr = 40), with the smallest reported value of temperature coefficient of resonant frequency (τf = +0.9 ppm/°C), and quality factor (Q × f = 5699 GHz) at x = 0.6.  相似文献   

9.
Effects of doping of Y and sintering atmosphere on the dielectric properties of Sr1-1.5xYxTiO3 ceramics (SYT, x = 0-0.014) were systematically investigated. The SYT14 (x = 0.014) ceramic sintered in N2 attains a colossal permittivity (CP, Ɛr = 28 084@ 1kHz, 27 685@ 2MHz) and an ultralow dielectric loss (tanδ = 0.007@ 1kHz, 0.003@ 2MHz) at room temperature. Because of using of the A-site deficient, there are in SYT ceramics. Through the comprehensive analysis of dielectric responses, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and complex impedance data, it is proved that doping of Y promotes the formation of (Y3+ are located at Sr2+ site), (Y3+ are located at Ti4+ site), and Ti3+, and sintering in reducing atmosphere of N2 results in more (oxygen vacancy) and (strontium vacancy) generating in SYT ceramics. The defect dipoles, , , , , , and formed by introduced defects make charge carriers localized in SYT ceramics. The combined action of the massive defect dipoles is responsible for the ultralow tanδ and CP in SYT14 ceramics sintered in N2.  相似文献   

10.
A Li and Ta modified (Na, K)NbO3 piezoelectric ceramic has been successfully co‐fired with inner copper electrodes in a reduced atmosphere. Highly dense NKN ceramics (95% relative density, 4.64 g/cm3) were obtained by sintering the samples in a low oxygen partial pressure (low pO2) atmosphere at 1050°C. The poly(propylene carbonate) binder system was used to permit a clean burnout at low temperature in N2 atmosphere, and also prevent the electrode copper particles from undergoing any oxidation. No interdiffusion of copper, chemical reactions, and/or carbon residues were observed in the grains, grain boundaries, or at the electrode–ceramic interface of the co‐fired samples from a detailed transmission electron microscopy (TEM) analysis. Dielectric and piezoelectric properties were characterized from those co‐fired prototyped samples. The samples displayed high relative dielectric permittivity above 800, with low dielectric loss about 3.6%. A normalized strain coefficient (max. strain/max. electric field) of = 220 pm/V was obtained under unipolar converse electromechanical measurement at 20 kV/cm. This paper presents the feasibility of co‐firing a Cu inner electrode with NKN ceramics toward multilayer lead‐free piezoelectric applications, providing an engineering route to narrow the performance differences between soft lead‐based piezoelectrics and lead‐free materials.  相似文献   

11.
Most reported results about phase transition probed by the photoluminescence (PL) spectra of Eu3+ ions are qualitative, but the quantitative analyses of phase transition were presented in this work. We fabricated (Na0.8, K0.2)0.5Bi0.497Eu0.003TiO3 (NKBT20:Eu) ferroelectric ceramics and investigated the phase structures and the PL spectra of NKBT20:Eu ceramics before and after poling at different electric fields. The PL spectra indicate a phase transition from tetragonal phase (T phase) to rhombohedral phase (R phase) within NKBT20:Eu ceramics after poling, consistent with the analyses by X-ray diffraction (XRD). Moreover, the emission intensity ratios of the “hypersensitive” transition to the magnetic dipole transition could be used to calculate the fractions of the phase transition quantitatively, which were further confirmed by XRD Rietveld refinements. This study provides a different perspective to investigate the phase transition induced by electric field for NKBT20:Eu ceramics, qualitatively and quantitatively, and the method is expected to be useful in more cases of phase analyses.  相似文献   

12.
New theoretical solutions involving conventional crack propagation from static to dynamic fracture in terms of mechanoluminescence (ML) and the experimental techniques to trace the in situ crack and its instantaneous stress intensity factor (SIF) have been suggested in SrAl2O4:Eu2+, Dy3+ (SAO). The direct optical method to determine the moving crack tip on behalf of ML was verified by indirect crack mouth opening displacement (CMOD). The mode I SIF calculated from the instantaneous cumulative ML fringes showed proper agreement with the SIFs and acquired from conventional ASTM E‐399 measurements under quasidynamic condition. The magnitude and shape of the theoretically predicted crack tip stress field was in accordance with the experimental in situ ML evidence while determining the quasidynamic SIF from the cumulative ML intensity. Therefore, the use of ML technology could be one of the possible substitutive and substantial alternatives for structural health monitoring systems due to its simplicity but effectiveness in detecting arrested or propagating crack tips and in assessing the instantaneous structural integrity by means of the ML fracture parameters.  相似文献   

13.
Defect greatly affects the microscopic structure and electrical properties of perovskite piezoelectric ceramics, but the microscopic mechanism of defect‐driven macroscopic properties in the materials is not still completely comprehended. In this work, K0.5Na0.5NbO3+x mol CuSb2O6 lead‐free piezoelectric ceramics were fabricated by a solid‐state reaction method and the defect‐driven evolution of piezoelectric and ferroelectric properties was studied. The addition of CuSb2O6 induces the formation of dimeric (DC1) and trimeric (DC2) defect dipoles. At low doping concentration of CuSb2O6 (0.5‐1.0 mol%), DC1 and DC2 coexist in the ceramics and harden the ceramics, inducing a constricted double P‐E loop and high Qm of 895 at x=0.01. However, DC2 becomes more dominant in the ceramics with high concentration of CuSb2O6 (≥1.5 mol%) and thus leads to softening behavior of piezoelectricity and ferroelectricity as compared to the ceramic with x=0.01, giving a single slanted P‐E loop and relatively low Qm of 206 at x=0.025. All ceramics exhibit relatively high d33 of 106‐126 pC/N. Our study shows that the piezoelectricity and ferroelectricity of K0.5Na0.5NbO3 ceramics can be tailored by controlling defect structure of the materials.  相似文献   

14.
Low‐energy recoil events in Ti3SiC2 are studied using ab initio molecular dynamics simulations. We find that the threshold displacement energies are orientation dependent because of anisotropic structural and/or bonding characteristic. For Ti and Si in the Ti–Si layer with weak bonds that have mixed covalent, ionic, and metallic characteristic, the threshold displacement energies for recoils perpendicular to the basal planes are larger than those parallel to the basal planes, which is an obvious layered‐structure‐related behavior. The calculated minimum threshold displacement energies are 7 eV for the C recoil along the direction, 26 eV for the Si recoil along the direction, 24 eV for the Ti in the Ti–C layer along the direction and 23 eV for the Ti in the Ti–Si layer along the direction. These results will advance the understanding of the cascade processes of Ti3SiC2 under irradiation and are expected to yield new perspective on the MAX phase family that includes more than 100 compounds.  相似文献   

15.
CaO–Al2O3–MgO–SiO2 (CAMS)‐based glass‐ceramics were prepared using body crystallization method. Adding Cr2O3 into the ceramics not only effectively lowered the crystallization temperature, but also led to significant grain refinement of diopside that crystallized in the CAMS glass‐ceramic after crystallization treatment at 900°C for 2 hours. Experimental work verified that the epitaxial growth of the diopside on the spinel particles, which formed during nucleation treatment when fabricating the glass‐ceramics, facilitated the heterogeneous nucleation of diopside on the spinel and refined the diopside. In addition, two energetically favored crystallographic orientation relationships between the epitaxial growth diopside and spinel were experimentally observed. They are //[001]diopside,////(200)diopside and //[101]diopside, (311)spinel//. These two novel results can be potentially used to develop new glass‐ceramic materials with improved performance.  相似文献   

16.
SrTiZrxO3 (x = 0, 0.002, 0.006, 0.01, and 0.014) ceramics with a weak temperature‐dependent giant permittivity (>104) and a very low dielectric loss (<0.01) were fabricated using the conventional solid‐state reaction method by sintering them in N2 at 1500°C. With increasing Zr content, the permittivity decreased from approximately 48 000 to 18 000 and the dielectric loss decreased from approximately 0.005 to 0.003. According to the XRD, XPS, and ac conductivity analysis, the dielectric properties of pure SrTiO3 ceramics sintered in N2 were due to the existence of the giant defect dipoles generated by the fully ionized oxygen vacancies and Ti3+ ions, while the dielectric properties of SrTiZrxO3 (x > 0) ceramics were also influenced by the defect dipoles (). The giant permittivity and low dielectric loss phenomenon could be explained by giant defect dipoles related to oxygen vacancies.  相似文献   

17.
(Nb+Al) co‐doped SrTiO3 ceramics with a nominal composition of Sr(Nb0.5Al0.5)xTi1‐xO3 (x = 0, 0.02, 0.04, and 0.06) were fabricated using the conventional solid‐state reaction method; giant permittivity (10500) and low dielectric loss (0.03) were obtained at x = 0.06. Dielectric and impedance spectroscopy, X‐ray photoelectron spectroscopy, and Raman spectroscopy, were employed to study why the dielectric property improved. The results indicate that the giant dielectric response occurs because of the combined effects of the off‐center Ti3+ reorientation and conduction of electrons with the polar ordering structure Ti3+/Ti4+. In contrast, the low dielectric loss can be attributed to electron localization that occurs because of the defect dipole . These fundamental understandings will benefit the design of doped SrTiO3 ceramics with desired performance.  相似文献   

18.
Luminescence glass is a potential candidate for the light‐emitting diodes (LEDs) applications. Here, we study the structural and optical properties of the Eu‐, Tb‐, and Dy‐doped oxyfluoride silicate glasses for LEDs by means of X‐ray diffraction, photoluminescence spectra, Commission Internationale de L'Eclairage (CIE) chromaticity coordinates, and correlated color temperatures (CCTs). The results show that the white light emission can be achieved in Eu/Tb/Dy codoped oxyfluoride silicate glasses under excitation by near‐ultraviolet light due to the simultaneous generation of blue, green, yellow, and red‐light wavelengths from Tb, Dy, and Eu ions. The optical performances can be tuned by varying the glass composition and excitation wavelength. Furthermore, we observed a remarkable emission spectral change for the Tb3+ single‐doped oxyfluoride silicate glasses. The 5D3 emission of Tb3+ can be suppressed by introducing B2O3 into the glass. The conversion of Eu3+ to Eu2+ takes place in Eu single‐doped oxyfluoride aluminosilicate glasses. The creation of CaF2 crystals enhances the conversion efficiency. In addition, energy transfers from Dy3+ to Tb3+ and Tb3+ to Eu3+ ions occurred in Eu/Tb/Dy codoped glasses, which can be confirmed by analyzing fluorescence spectra and energy level diagrams.  相似文献   

19.
Lead‐free Ba0.7Ca0.3Ti1?xSnxO3 (x=0.00, 0.025, 0.050, 0.075, and 0.1, abbreviated as BCST) electroceramic system was prepared by the solid‐state reaction method and its ferroelectric, piezoelectric, and electrostrictive properties were investigated. X‐ray diffraction shows that the compositions with x≤0.05 exhibit a tetragonal crystal structure having P4mm symmetry; while the compositions x=0.075 and 0.1 exhibit a mixed P4mm+Amm2 phase coexistence of tetragonal and orthorhombic and P4mm+Pmm pseudo‐cubic lattice symmetries, respectively, at room temperature. The dense microstructure having relative density ~90%‐92% and average grain size in the range ~2.36 μm to 8.56 μm was observed for BCST ceramics. Temperature‐dependent dielectric measurements support the presence of phase coexistence and show the decrease in Curie temperature (TC) with Sn4+ substitution. The dielectric loss (tan δ) values in the temperature range (?100°C to 150°C) was observed to be <4%, for all BCST ceramics. The BCST compositions exhibit typical polarization‐electric field (P‐E) hysteresis and electric field induced strain (S‐E) butterfly loop, which confirms the ferroelectric and piezoelectric character. The compositions x=0.025, 0.05 and 0.075 show the peaking behavior of displacement current density () to an applied electric field () (J‐E) which implies the saturation state of polarization. The maximum electrostrictive coefficient (Q33) value of 0.0667 m4/C2 was observed for x=0.075 and it is higher than some of the significant lead‐based electrostrictive materials. The compositions x=0.05 and 0.075 exhibit the notable electrostrictive properties that may be useful for piezoelectric Ac device applications. The observed results are discussed and correlated with the structure‐property‐composition.  相似文献   

20.
We report on a rapid sintering protocol, which optimizes the preparation of 0‐29 mol% Gd‐doped ceria ceramics with density ≥98% of the theoretical crystal lattice value. The starting material is a nanometer grain‐sized powder prepared by carbonate co‐precipitation and calcined with minimal agglomeration and loss of surface area. Slow (5°C/min) heating of the green‐body from 500°C to the optimum temperature of rapid sintering (, dwell time <1 minute) followed by 20°C/min cooling to 1150°C with 6 minutes dwell time, produces maximum pellet density. increases from 1300 to ~1500°C with increase in Gd‐content, while the average grain size in the maximally dense pellets, as determined by scanning electron microscopy, ranges between 600 nm and ~1 μm. For each doping level, the logarithm of the average grain size decreases linearly with 1/T1. By avoiding extended exposure to sintering temperatures, this protocol is expected to minimize undesirable Gd segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号