首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2017,43(9):7094-7098
Zirconolite-rich composite material was rapidly obtained from combustion synthesis (CS) using CuO as the oxidant and Ti as the reductant. As the surrogate of trivalent actinides, Nd was incorporated to substitute the Ca site of zirconolite with Al2O3 as the charge compensator. The results demonstrate that Nd-bearing calcium zirconium titanium oxide (CZTO) was produced as the main phase after Nd2O3 and Al2O3 addition. Nd2O3 was consolidated into the lattice structure of zirconolite-rich waste forms with waste loading of about 20 wt%. The 42 days normalized leaching rates (LRi) of Cu, Ca and Nd in the tested CNA-3 sample were evaluated to be 1.98×10−2, 7.36×10−2 and 6.35×10−5 g m−2·d−1.  相似文献   

2.
ABSTRACT

In this study, the zirconolite-rich composite was rapidly synthesised from self-propagating high-temperature synthesis plus quick pressing using MoO3 as the oxidant and Ti as the reductant. As a surrogate of trivalent actinides, Nd was introduced to substitute the Ca site of zirconolite and Al was employed as the charge compensator to replace the Ti site (nominally Ca1?xNdxZrTi2?xAlxO7). The phase composition and Nd occupancy were analysed after Nd2O3 addition. Nd-bearing zirconolite was produced as the major ceramic phase. Nd mostly substitutes the Ca sites of zirconolite, which results in waste loading higher than 8.6?wt-% Nd. The aqueous durability of Nd–Al codoped sample (with 15?at.-% Nd substitutes the Ca site of zirconolite) was evaluated at 90°C as well. The 42 days normalised leaching rates of Mo, Ca and Nd were measured to be 3.70, 1.90?×?10?2 and 3.46?×?10?4?g?m?2?d?1.  相似文献   

3.
Various content of neodymia Nd: Y2O3 (Nd: 0.5–5.0 at.%) transparent ceramics were fabricated by vacuum sintering. The prepared Nd: Y2O3 ceramics exhibit high transmittance (~80%) at the wavelength of 1100 nm. It is found that the increase in Nd concentration enhances the grain size growth, while decreases the phonon energy, which is benefit for improving both the luminescence quantum and up‐conversion efficiency. The thermal conductivity and thermal expansion coefficient of the transparent 1.0 at.% Nd: Y2O3 ceramic is 5.51 W·(m·K)?1 and 8.11 × 10?6 K?1, respectively. The hardness and the fracture toughness of the transparent ceramic is 9.18 GPa and 1.03 Mpa·m1/2, respectively. The results indicate that the Nd: Y2O3 transparent ceramic is a potential candidate material for laser.  相似文献   

4.
The influence of rare earth addition on the microstructure and phase transition of Sr0·61Ba0·39Nb2O6 ceramics was investigated. Sr0·61Ba0·39Nb2O6 undoped and doped with 0·3 and 1·0 wt% La2O3 and 0·3 wt% Nd2O3 were prepared by the conventional ceramic method. Dielectric measurements were performed in order to characterize the phase transition in these ceramics. The addition of RE elements decreased the maximum dielectric constant (εMAX) and its correspondent temperature (TMAX) and increased the dielectric losses in all studied samples. A peak broadening and an increasingly Curie–Weiss behavior was verified for a La, while an inverse dependence occurred for Nd doping.  相似文献   

5.
In this study, zirconolite (CaZrTi2O7)/Mo composite was rapidly synthesized by self‐propagating high‐temperature plus quick pressing (SHS/QP) technique using MoO3 as the oxidant. As the surrogate of tetravalent actinide nuclides, up to 50 at.% CeO2 (about 17.5 wt% of the raw material) was introduced to substitute the Zr site of zirconolite. Perovskite (CaTiO3) and rutile TiO2 were inevitably produced after the incorporation of CeO2. The raw CeO2 was partially reduced to trivalent state, which promotes the substitution of Ce into the Ca sites of perovskite and zirconolite. The aqueous durability of Ce‐bearing waste form was investigated with normalized leaching rates (42 d) of Ce in moderate value of about 10?2 g m?2 d?1.  相似文献   

6.
Ultra low temperature co‐fired ceramics system based on zinc borate 3ZnO–2B2O3 (3Z2B) glass matrix and SiO2 filler was investigated with regard to the phase composition, the microstructure and the dielectric properties as functions of the filler content and sintering temperature. The softening temperature of 554°C and the crystallization temperature of around 650°C for the glass were confirmed by Differential Thermal Analysis result. The X‐ray diffraction results show that all SiO2‐filled samples were made up of SiO2, α‐Zn(BO2)2, Zn3B2O6 phases. And there was no chemical reaction between SiO2 and the glass during densification. And then the dielectric constant decreased with the increasing content of SiO2. At the level of 15 wt% SiO2 addition, the composites can be densified at a sintering temperature of 650°C for 30 min, and showed the optimal dielectric properties at 1 MHz with the dielectric constant of 6.1 and the dielectric loss of 1.3 × 10?3, which demonstrates a good potential for use in LTCC technology.  相似文献   

7.
《Ceramics International》2022,48(22):33003-33010
The effect of the solid loading (41–50 wt%) of the slurry on granulometric composition and physico-chemical characteristics of Y2O3–Al2O3–Nd2O3 powder mixtures obtained by planetary ball milling has been studied for the first time. It was shown that the particle size distribution of powder, its Zeta potential, and specific surface area depend on the solid loading of the milled slurry and, consequently, on the interparticle distance during milling. The interparticle distance decreases from 200 nm to 142 nm with an increase of solid loading in the range of 41–50 wt%. It was shown that for the solid loading of 47 wt%, the convergence of particles to a distance comparable to their median diameter promotes subsequent clustering of particles. This facilitates the sintering of highly-homogenous ceramics. It was found that solid loadings in the 46–50 wt% range is useful for obtaining high-quality Nd:YAG transparent ceramics. The lowest optical losses optical losses of 1 × 10?3 cm?1 and the highest in-line transmittance of 84.1%@1064 nm were obtained for 1 at.% Nd:YAG transparent ceramics (22 × 3 × 4 mm3) prepared from slurries with 47 wt% solid loading (taking all other ball milling parameters fixed). If the interparticle distance in the powder is higher (solid loading of 41 wt%) than the median particle diameter, the ceramics are characterized by significant residual porosity due to the survival of large particles (insufficient milling).  相似文献   

8.
Pyrochlore oxides of A2Zr2O7, where A represents trivalent rare‐earth elements, have a high electrical conductivity, which makes them suitable for applications as high‐temperature solid electrolytes. The influence of Gd and Yb cations co‐doping at the Nd site on structure and electrical conductivity of a pyrochlore oxide Nd2Zr2O7 is investigated using X‐ray diffraction and impedance spectra measurements. Different zirconate ceramics of Nd2Zr2O7, Nd1.8Gd0.2Zr2O7, Nd1.8Gd0.1Yb0.1Zr2O7, Nd1.4Gd0.6Zr2O7 and Nd1.4Gd0.3Yb0.3Zr2O7 are prepared by pressureless‐sintering method at 1,973 K for 10 h in air. Nd2Zr2O7 doped with Gd and Yb cations at the Nd site exhibit a single phase of pyrochlore‐type structure. The measured values of the total conductivity obey the Arrhenius relation. Nd2Zr2O7 and its doped zirconate ceramics are oxide‐ion conductors in the oxygen partial pressure range of 1.0 × 10–4 to 1.0 atm at all test temperature levels. The total conductivity increases with reducing average ionic radii of A‐site rare‐earth cations. The dual Yb+Gd intermix doping causes a distinctly enhanced total conductivity as compared to unmodified Nd2Zr2O7 and singly Gd‐doped zirconate ceramics. The highest total conductivity value obtained in this work is 1.02 × 10–2 S cm × 1 at 1,173 K for Nd1.4Gd0.3Yb0.3Zr2O7 ceramic.  相似文献   

9.
Dense (~98.5%), lithium aluminum silicate glass‐ceramics were obtained via the sinter‐crystallization of glass particle compacts at relatively low temperatures, that is, 790–875°C. The effect of P2O5 on the glass‐ceramics' sinter‐crystallization behavior was evaluated. We found that P2O5 does not modify the surface crystallization mechanism but instead delays the crystallization kinetics, which facilitates viscous flow sintering. Our glass‐ceramics had virgilite (LixAlxSi3‐xO6; 0.5 < x < 1), a crystal size <1 μm, and a linear thermal expansion coefficient of 2.1 × 10?6°C?1 in the temperature range 40–500°C. The overall heat treatment to obtain these GCs was quite short, at ~25 min.  相似文献   

10.
Spectroscopic and physical properties of Nd3+-doped alkali lead borate glasses of type 20R 2O · 30PbO · 49.5B2O3 · 0.5Nd2O3 (R = Li and K) and alkaline-earth lead borate glasses 20RO · 30PbO · 49.5B2O3 · 0.5Nd2O3 (R = Ca, Ba, and Pb) have been investigated. Optical absorption spectra have been used to determine the Slater-Condon (F2, F4, and F6), spin orbit ξ4f, and Racah parameters (E1, E2, and E3). The oscillator strengths and the intensity parameters Ω2, Ω4, and Ω6 have been determined by the Judd-Ofelt theory, which, in turn, provide the radiative transition probability (A), total transition probability (A T ), radiative lifetime (τ R ), and branching ratio (β R , %) for the fluorescent levels. The lasing efficiency of the prepared glasses has been characterized by the spectroscopic quality factor (Ω46), the value of which is in the range 0.2–1.5, typical of Nd3+ in different laser hosts. A red shift of the peak wavelength is observed upon addition of alkali or alkaline-earth oxides to the lead borate glass. A higher value of the W2 parameter for potassium-doped glass indicates a higher covalency for this glass matrix. The relative intensity of the peaks 4I9/24F7/2, 4S3/2 has also been studied. The text was submitted by the authors in English.  相似文献   

11.
《Ceramics International》2020,46(5):6085-6094
In this work, borosilicate based glass-ceramics with pyrochlore as crystalline phase for immobilization of high-level nuclear wastes (HLWs) were successfully synthesized by a one-step heat-treatment method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS) demonstrate that the obtained glass-ceramics show a regularly and uniformly distributed single pyrochlore (Ca,Na)(Nb,Ti)2Nd0.67O6F crystalline phase. Moreover, the glass-ceramics prepared show LRNa, LRB, LRAl, LRSi, LRNd, LRTi and LRNb of about 6.8 × 10−3, 3.7 × 10−4, 1.5 × 10−2, 2.2 × 10−3, 3.0 × 10−5, 5.1 × 10−5 and 5.5 × 10−6 g m−2 d−1 respectively after 28 leaching days, which are comparable to stable glass-ceramics for HLW immobilization. The results of this study are expected to provide an experimental reference for the engineering synthesis of glass-ceramics for the immobilization of certain HLWs.  相似文献   

12.
The Bi2O3–B2O3–ZnO–SiO2 (BB35SZ) glass effects on the sintering behavior and magnetic properties of Bi–Zn co‐doped Co2Y ferrites were investigated in developing low‐temperature‐fired ferrites. The results indicate that BB35SZ glass can be used as a sintering aid to reduce the densification temperature of Co2Y ferrites from 1300°C to 900°C. The 2(Ba0.9Bi0.1O)·2(Zn0.4Co0.4Cu0.2O)·6(Fe1.97Zn0.03O3) ferrite with 4 wt% BB35SZ glass can be densified below 900°C, exhibiting an initial permeability of 3.4 and quality factor of 55. This process provides a promising candidate for multilayer chip magnetic devices for microwave applications.  相似文献   

13.
《Ceramics International》2021,47(19):27545-27552
B2O3 and CuO were codoped into 6Nd[(Zn0.7Co0.3)0.5Ti0.5]O3–4(Na0.5Nd0.5)TiO3 (abbreviated as 6NZCT–4NNT) ceramics as sintering aids. The influences of the sintering aids on the sintering characteristics, microstructure and microwave dielectric properties of the 6NZCT–4NNT ceramics were systematically investigated as a function of the proportion of B2O3 and CuO. Codoping could greatly reduce the sintering temperature from 1410 °C to 1150 °C, indicating that B2O3/CuO are good sintering aids for 6NZCT–4NNT ceramics. The B2O3/CuO sintering aids had no significant impact on the phase purity of the investigated ceramics, even though a solid solution was formed due to Cu2+ ion substitution. However, they had evident influences on the surface morphology and grain size. The average grain size was enlarged with increasing amounts of CuO in the B2O3/CuO sintering aids. Remarkable deterioration of the microwave dielectric properties for 6NZCT-4NNT ceramics was not observed when codoping an appropriate amount of B2O3 and CuO. The 6NZCT–4NNT ceramics codoped with 2.0 mol% B2O3 and 2.0 mol% CuO sintered at 1150 °C for 3 h exhibited a homogeneous microstructure and promising microwave dielectric properties: an appropriate dielectric constant (εr = 49.37), a high quality factor (QF = 47,295 GHz), and a near-zero temperature coefficient of resonant frequency (TCF = +0.9 ppm/°C).  相似文献   

14.
A strategy for improving the specific stiffness of silicon carbide (SiC) ceramics by adding B4C was developed. The addition of B4C is effective because (1) the mass density of B4C is lower than that of SiC, (2) its Young’s modulus is higher than that of SiC, and (3) B4C is an effective additive for sintering SiC ceramics. Specifically, the specific stiffness of SiC ceramics increased from ~142 × 106 m2?s?2 to ~153 × 106 m2?s?2 when the B4C content was increased from 0.7 wt% to 25 wt%. The strength of the SiC ceramics was maximal with the incorporation of 10 wt% B4C (755 MPa), and the thermal conductivity decreased linearly from ~183 to ~81 W?m?1?K?1 when the B4C content was increased from 0.7 to 30 wt%. The flexural strength and thermal conductivity of the developed SiC ceramic containing 25 wt% B4C were ~690 MPa and ~95 W?m?1?K?1, respectively.  相似文献   

15.
Ce‐doped zirconia ceramics with general stoichiometry of Zr1‐xCexO2 (0 ≤ x ≤ 1) have been obtained by substitution of Ce4+ for Zr4+ in ZrO2. The phase and microstructure evolutions of the ceramics were investigated, and the effects of composition, temperature, and pH value on the chemical durability of the ceramics were also studied. The results show that the phase transformation from monoclinic to tetragonal takes place at about x = 0.2, and from tetragonal to cubic at about x = 0.6. It is found that the increase in Ce content and/or sinter temperature promote the phase transformation. The leaching studies show that the normalized leaching rates of Ce (LRCe) increase with increasing Ce content. Moreover, LRCe in acid solution are higher than those in neutral and alkaline solution. After 42 days, LRCe is 10?5 ~ 10?7 g m?2 d?1 under all different leaching conditions, exhibiting their excellent chemical durability.  相似文献   

16.
Eu3+‐doped cesium barium borate glass with the composition of Cs2O·2BaO·3B2O3 was prepared by the conventional melt quenching method. The glass‐ceramic sample was obtained from the re‐crystallization of the as‐made glass to change the amorphous glass into a crystalline host. This reduces the Eu3+ in glass to Eu2+ ions resulting in a yellow‐emitting phosphor of Eu2+‐activated CsBaB3O6. The samples were investigated by the XRD patterns and SEM micrograph, the optical absorption, the photoluminescence spectra, and decay curves. The as‐made glass has only Eu3+ centers. Under the excitation of blue or near‐UV light, Eu2+‐doped CsBaB3O6 presents yellow‐emitting color from the allowed inter‐configurational 4f–5d transition in the Eu2+ ions. The maximum absolute luminescence quantum efficiencies of Eu2+‐doped CsBaB3O6 phosphor was measured to be 47% excited at 430 nm light at 300 K. By taking into account the efficient excitation in blue wavelength region, this new phosphor could be a potential yellow‐emitting phosphor for an application in white light‐emitting diodes fabricated with blue chips.  相似文献   

17.
《Ceramics International》2022,48(8):11124-11133
A series of rare-earth-tantalate high-entropy ceramics ((5RE0.2)Ta3O9, where RE = five elements chosen from La, Ce, Nd, Sm, Eu and Gd) were prepared by conventional sintering in air at 1500 °C for 10 h. The (5RE0.2)Ta3O9 high-entropy ceramics exhibit an orthogonal structure and sluggish grain growth. No phase transition occurs in the test temperature of 25–1200 °C. The thermal conductivities of all (5RE0.2)Ta3O9 ceramics are in the range of 1.14–1.98 W m?1 K?1 at a test temperature of 25–500 °C, approximately half of that of YSZ. The sample of (Gd0.2Ce0.2Nd0.2Sm0.2Eu0.2)Ta3O9 exhibits a low glass-like thermal conductivity with a value of 1.14 W m?1 K?1 at 25 °C. The thermal expansion coefficient of (5RE0.2)Ta3O9 ceramics ranges from 5.6 × 10?6 to 7.8 × 10?6 K?1 at 25–800 °C, and their fracture toughness is high (3.09–6.78 MPa·m1/2). The results above show that (5RE0.2)Ta3O9 ceramics could be a promising candidate for thermal barrier coatings.  相似文献   

18.
Zircon ceramics (ZrSiO4) are promising candidates for actinide immobilization. Here, a series of Zr1-xNdxSiO4-x/2 (x?=?0, 0.02, 0.20, and 1.0) ceramics are prepared to study the effects of phase evolution and acidity on the chemical durability of ZrSiO4-based nuclear waste forms. The results show that the chemical stability of the single-phase ZrSiO4 sample is better than that of the biphasic Zr0.8Nd0.2SiO3.9 sample due to the existence of a secondary highly soluble phase (Nd2Si2O7), which increases the contact area with leachate. The normalized release rates of both zirconium (Zr) and neodymium (Nd) in the Zr1-xNdxSiO4-x/2 ceramic waste forms increase with increasing Nd loading and acid concentration. LRZr in ZrSiO4 ceramics and LRNd in Zr0.98Nd0.02SiO3.99 ceramics are the lowest, while LRZr and LRNd reach the highest values in the Zr0.8Nd0.2SiO3.9 and Nd2Si2O7 ceramics, respectively. The normalized release rates of Zr are lower than those of Nd due to the difference in the energies of their bonds with oxygen atoms. Moreover, the changes in the surfaces of the leached ceramics are consistent with their leaching results.  相似文献   

19.
In this study, we investigated the electrical and thermal properties of SiC ceramics with 2 vol% equimolar Y2O3–RE2O3 (RE = Sm, Gd, Lu) additives. The three SiC ceramics with 2 vol% equimolar Y2O3–RE2O3 additives showed electrical conductivities on the order of ~103 (Ω·m)?1, which is one order of magnitude higher than that of the SiC ceramics sintered with 2 vol% Y2O3 only. The increase in electrical conductivity is attributed to the growth of heavily nitrogen‐doped SiC grains during sintering and the confinement of oxide additives in the junction area. The thermal conductivities of the SiC ceramics were in the 176–198 W·(m·K)?1 range at room temperature. The new additive systems, equimolar Y2O3–RE2O3, are beneficial for achieving both high electrical conductivity and high thermal conductivity in SiC ceramics.  相似文献   

20.
In this paper, the phase compositions and the dielectric properties of 3ZnO–2B2O3 glass‐ceramic prepared by solid‐state method were investigated. The X‐ray diffraction patterns show that all sintered samples consist of Zn3B2O6 and α‐Zn(BO2)2. The dielectric properties changed significantly with the sintering temperature. After sintering at 650°C for 30 min, the glass‐ceramic exhibits optimum dielectric properties: a dielectric constant of 7.5 and a dielectric loss of 0.6 × 10?3 at 10 MHz. The chemical compatibility with Ag electrode under the co‐fired process illustrates a potential application in low temperature co‐fired ceramic field for the glass‐ceramic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号