首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
孙树峰  王萍萍 《红外与激光工程》2018,47(12):1206009-1206009(5)
针对微/纳机电系统(MEMS/NEMS)零部件加工制造难题,研究具有亚衍射极限空间分辨率的飞秒激光双光子聚合加工方法,搭建钛蓝宝石飞秒激光微纳加工系统,对液态聚合物材料进行飞秒激光双光子聚合加工工艺试验研究。结果表明:随着激光功率的降低,单个固化点的尺寸减小,加工分辨率提高;扫描步距减小,所加工工件的表面粗糙度数值减小,但加工效率降低。基于CAD软件设计出微米墙和纳米线构成的三维微纳结构,利用飞秒激光双光子聚合加工得到该三维微纳结构实物,通过优化工艺参数加工出直径小于100 nm的纳米线,从而证明飞秒激光双光子聚合加工方法为微/纳器件的制造提供了一种有效方法。  相似文献   

2.
飞秒激光直写技术(FsLDW)因其优异的三维加工能力、高空间分辨率、低附加损伤等优点被广泛地应用于微纳加工领域,但传统飞秒激光直写技术在加工效率、加工面积和加工精度之间存在矛盾。为了实现高速、大面积、高精度的激光微纳加工,构建了一种由大范围水平位移台和高速旋转台组成的极坐标系飞秒激光直写系统。基于该系统,研究了轴对称样品中心对准方法及曲面曲率校准方法,并在曲面上制备了多阶三维结构。最终完成了在透镜曲面上制备直径为10mm的衍射圆光栅结构,实现了飞秒激光高速、大尺寸、高精度地制备大面积三维结构。该研究为高性能折衍混合光学元件的制备提供了有力的技术支持。  相似文献   

3.
双光子激光三维微细加工及信息存储技术   总被引:2,自引:0,他引:2  
利用具有极高脉冲光强的飞秒激光器和对光束进行强聚焦的显微镜装置可以制造具有亚微米精度的三维微器件以及进行三维高密度信息存储。文本介绍了自行开发的双光子微细加工系统以及三维高密度信息存储系统,以及用该系统进行三维光学微细加工及三维光学信息存储的实验情况,给出了部分利用已建立的加工系统所获得的初步实验结果。  相似文献   

4.
利用具有极高脉冲光强的飞秒激光器和对光束进行强聚焦的显微镜装置可以制造具有亚微米精度的三维微器件以及进行三维高密度信息存储。文本介绍了自行开发的双光子微细加工系统以及三维高密度信息存储系统 ,以及用该系统进行三维光学微细加工及三维光学信息存储的实验情况 ,给出了部分利用已建立的加工系统所获得的初步实验结果  相似文献   

5.
利用具有极高脉冲光强的飞秒激光器和对光束进行强聚焦的显微镜装置可以制造具有亚微米精度的三维微器件以及进行三维高密度信息存储.文本介绍了自行开发的双光子微细加工系统以及三维高密度信息存储系统,以及用该系统进行三维光学微细加工及三维光学信息存储的实验情况,给出了部分利用已建立的加工系统所获得的初步实验结果.  相似文献   

6.
张奇  沈磊  何博 《激光技术》2021,45(4):429-435
作为一种新型的减材加工技术,飞秒激光在材料微加工中具有独特优势。介绍了飞秒激光加工的机理,分析了飞秒激光加工效率和加工质量的影响因素,阐述了飞秒激光加工工艺参量及表面质量的预测方法,对飞秒激光与增材制造的结合应用作了展望。飞秒激光加工的效率与精度影响因素众多,要真正在金属加工领域精准大规模应用这一精细技术,尚需对飞秒激光及其与不同特性金属材料间的交互作用进行更为深入系统的研究。  相似文献   

7.
飞秒激光微加工:激光精密加工领域的新前沿   总被引:18,自引:0,他引:18  
何飞  程亚 《中国激光》2007,34(5):95-622
飞秒激光微加工技术具有加工精度高、热效应小、损伤阈值低以及能够实现真正的三维微结构加工等优点,这些特性是传统的激光加工技术所无法取代的。首先回顾了激光微加工和超短脉冲激光技术的发展历史,然后介绍超短脉冲激光与金属和介质材料相互作用的机制,接着阐述了飞秒激光直写、干涉和投影制备等各种加工方法的原理,重点讨论飞秒激光在三维光子器件集成、微流体芯片制备及其在生化传感方面的应用等,最后展望了飞秒激光微加工领域所面临的机遇和挑战,指出了未来的研究方向。  相似文献   

8.
王敏 《电子世界》2014,(5):185-186
飞秒激光微加工技术作为一种新兴的加工技术,具有非接触、效率高、加工精度高、热效应小、损伤阈值低以及能够实现真正的三维结构微加工等传统技术无法比拟的诸多优点,其应用领域相当广泛。文章描述了飞秒激光加工透明材料时,激光能量沉积在光学趋肤层,热效应极小的特性。指出了目前打孔普遍利用激光的直写技术,针孔掩模加工技术可以改善孔形的事实。最后展望了飞秒激光微加工的研究方向。  相似文献   

9.
为了研究飞秒激光对不锈钢材料的加工工艺,采用基于飞秒激光材料烧蚀的微细加工方法,深入研究了飞秒激光高效高质量微细加工不锈钢材料的工艺条件与参量优化,并应用于微型不锈钢悬臂梁的制作。分析了激光能量密度、激光扫描速度、重复扫描次数对加工形貌和蚀除速率的影响,制作出了高质量的微米量级的不锈钢微型悬臂梁。结果表明,飞秒激光微细加工是一种极具前途与极具柔性的微机电系统器件加工手段。  相似文献   

10.
目前,微加工和精加工技术的迅速发展对微型化加工技术提出了更高的要求:将加工尺度提高到微米甚至纳米级,并且能够在材料内部实现三维立体微加工.飞秒激光可以突破衍射极限的限制,打破了加工极限,是当前先进制造技术的热点.本文综述了飞秒激光加工的发展历程和机理,并从库仑爆炸模型、微爆炸模型、色心模型以及双光子电离模型等方面对激光加工机理进行了阐述.对于飞秒激光的超快作用过程,仿真是分析加工机理、研究激光与材料作用过程的主要手段.分析了飞秒激光仿真所采用的双温模型、分子动力学模型及复合模型的特点及其适用范围,为飞秒激光加工的理论研究提供依据.最后指出了目前飞秒激光加工技术存在的问题,并对该技术的发展进行了展望.  相似文献   

11.
Waveguide multilayer optical card (WMOC) is a novel storage device of three-dimensional optical information. An advanced readout system fitting for the WMOC is introduced in this paper. The hardware mainly consists of the light source for reading, WMOC, motorized stages addressing unit, microscope imaging unit, CCD detecting unit and PC controlling & processing unit. The movement of the precision motorized stage is controlled by the computer through Visual Basic (VB) language in software. A control panel is also designed to get the layer address and the page address through which the position of the motorized stages can be changed. The WMOC readout system is easy to manage and the readout result is directly displayed on computer monitor.  相似文献   

12.
IntroductionNanoimprint Lithography is a well-acknowl-edged low cost, high resolution, large area pattern-ing process. It includes the most promising methods,high-pressure hot embossing lithography (HEL) [2],UV-cured imprinting (UV-NIL) [3] and micro contactprinting (m-CP, MCP) [4]. Curing of the imprintedstructures is either done by subsequent UV-lightexposure in the case of UV-NIL or by cooling downbelow the glass transition temperature of the ther-moplastic material in case of HEL…  相似文献   

13.
The collinearly phase-matching condition of terahertz-wave generation via difference frequency mixed in GaAs and InP is theoretically studied. In collinear phase-matching, the optimum phase-matching wave hands of these two crystals are calculated. The optimum phase-matching wave bands in GaAs and lnP are 0.95-1.38μm and 0.7-0.96μm respectively. The influence of the wavelength choice of the pump wave on the coherent length in THz-wave tuning is also discussed. The influence of the temperature alteration on the phase-matching and the temperature tuning properties in GaAs crystal are calculated and analyzed. It can serve for the following experiments as a theoretical evidence and a reference as well.  相似文献   

14.
Composition dependence of bulk and surface phonon-polaritons in ternary mixed crystals are studied in the framework of the modified random-element-isodisplacement model and the Bom-Huang approximation. The numerical results for Several Ⅱ - Ⅵ and Ⅲ- Ⅴ compound systems are performed, and the polariton frequencies as functions of the compositions for ternary mixed crystals AlxGa1-xAs, GaPxAS1-x, ZnSxSe1-x, GaAsxSb1-x, GaxIn1-xP, and ZnxCd1-xS as examples are given and discussed. The results show that the dependence of the energies of two branches of bulk phonon-polaritons which have phonon-like characteristics, and surface phonon-polaritons on the compositions of ternary mixed crystals are nonlinear and different from those of the corresponding binary systems.  相似文献   

15.
A doping system consisting of NPB and PVK is employed as a composite hole transporting layer (CHTL). By adjusting the component ratio of the doping system, a series of devices with different concentration proportion of PVK : NPB are constracted. The result shows that doping concentration of NPB enhances the competence of hole transporting ability, and modifies the recombination region of charge as well as affects the surface morphology of doped film. Optimum device with a maximum brightness of 7852 cd/m^2 and a power efficiency of 1.75 lm/W has been obtained by choosing a concentration proportion of PVK : NPB at 1:3.  相似文献   

16.
An insert layer structure organic electroluminescent device(OLED) based on a new luminescent material (Zn(salen)) is fabricated. The configuration of the device is ITO/CuPc/NPD/Zn(salen)/Liq/LiF/A1/CuPc/NPD/Zn(salen)/Liq/LiF/A1. Effective insert electrode layers comprising LiF(1nm)/Al(5 nm) are used as a single semitransparent mirror, and bilayer cathode LiF(1 nm)/A1(100 nm) is used as a reflecting mirror. The two mirrors form a Fabry-Perot microcavity and two emissive units. The maximum brightness and luminous efficiency reach 674 cd/m^2 and 2.652 cd/A, respectively, which are 2.1 and 3.7 times higher than the conventional device, respectively. The superior brightness and luminous efficiency over conventional single-unit devices are attributed to microcavity effect.  相似文献   

17.
Due to variable symbol length of digital pulse interval modulation(DPIM), it is difficult to analyze the error performances of Turbo coded DPIM. To solve this problem, a fixed-length digital pulse interval modulation(FDPIM) method is provided. The FDPIM modulation structure is introduced. The packet error rates of uncoded FDPIM are analyzed and compared with that of DPIM. Bit error rates of Turbo coded FDPIM are simulated based on three kinds of analytical models under weak turbulence channel. The results show that packet error rate of uncoded FDPIM is inferior to that of uncoded DPIM. However, FDPIM is easy to be implemented and easy to be combined, with Turbo code for soft-decision because of its fixed length. Besides, the introduction of Turbo code in this modulation can decrease the average power about 10 dBm, which means that it can improve the error performance of the system effectively.  相似文献   

18.
It is a key problem to accurately calculate beam spots' center of measuring the warp by using a collimated laser. A new method, named double geometrical center method (DGCM), is put forward for the first time. In this method, a plane wave perpendicularly irradiates an aperture stop, and a charge couple device (CCD) is employed to receive the diffraction-beam spots, then the geometrical centers of the fast and the second diffraction-beam spots are calculated respectively, and their mean value is regarded as the center of datum beam. In face of such adverse instances as laser intension distributing defectively, part of the image being saturated, this method can still work well. What's more, this method can detect whether an unacceptable error exits in the courses of image receiving, processing and calculating. The experimental results indicate the precision of this method is high.  相似文献   

19.
DUV lithography, using the 248 nm wavelength, is a viable manufacturing option for devices with features at 130 nm and less. Given the low kl value of the lithography, integrated process development is a necessary method for achieving acceptable process latitude. The application of assist features for rule based OPC requires the simultaneous optimization of the mask, illumination optics and the resist.Described in this paper are the details involved in optimizing each of these aspects for line and space imaging.A reference pitch is first chosen to determine how the optics will be set. The ideal sigma setting is determined by a simple geometrically derived expression. The inner and outer machine settings are determined, in turn,with the simulation of a figure of merit. The maximum value of the response surface of this FOM occurs at the optimal sigma settings. Experimental confirmation of this is shown in the paper.Assist features are used to modify the aerial image of the more isolated images on the mask. The effect that the diffraction of the scattering bars (SBs) has on the image intensity distribution is explained. Rules for determining the size and placement of SBs are also given.Resist is optimized for use with off-axis illumination and assist features. A general explanation of the material' s effect is discussed along with the affect on the through-pitch bias. The paper culminates with the showing of the lithographic results from the fully optimized system.  相似文献   

20.
From its emergence in the late 1980s as a lower cost alternative to early EEPROM technologies, flash memory has evolved to higher densities and speedsand rapidly growing acceptance in mobile applications.In the process, flash memory devices have placed increased test requirements on manufacturers. Today, as flash device test grows in importance in China, manufacturers face growing pressure for reduced cost-oftest, increased throughput and greater return on investment for test equipment. At the same time, the move to integrated flash packages for contactless smart card applications adds a significant further challenge to manufacturers seeking rapid, low-cost test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号