首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 361 毫秒
1.
基于梁轨相互作用原理,采用有限元方法建立线-桥-墩一体化计算模型,以多跨简支梁和连续梁为例,分析不同墩台刚度对桥上无缝线路计算的影响。计算结果表明:钢轨伸缩力与伸缩位移、墩台纵向力均随着墩台纵向水平刚度的增大而增大,但增加幅度逐渐减缓;墩台自身的纵向水平位移会改变梁轨系统的纵向受力情况,当桥梁墩台自身位移较大时,应在桥上无缝线路纵向力计算中考虑其作用;钢轨挠曲力随着墩台刚度增大而增大,桥墩纵向水平刚度对钢轨制动力及梁轨相对位移的影响较为明显,应据此设定其对墩台最小水平刚度的限值;墩台刚度越大,钢轨断缝值越小。为满足断缝值不超限,桥梁墩台设计时应合理确定其纵向水平刚度值。  相似文献   

2.
为研究连续梁桥上有轨电车嵌入式轨道结构在温度荷载作用下的受力变形特性及影响因素,采用线性弹簧模拟梁轨相互作用,建立嵌入式轨道-桥-墩一体化有限元计算模型。以实际工况为例,确定伸缩工况下合理的连续梁两侧简支梁跨数,并探讨梁体温差、高分子材料纵向阻力、小阻力高分子材料铺设范围和桥梁支座布置方案对轨道结构伸缩受力和变形分布规律的影响。研究结果表明:对于多联连续梁桥,当计算伸缩工况时,可取连续梁两侧各5跨简支梁作为边界条件;随着高分子材料纵向阻力的增加,伸缩力逐渐增大,而轨板相对位移逐渐减小,故在设计嵌入式轨道桥上无缝线路时,应综合考虑轨道结构受力和变形的要求;针对本文工况,当从减小钢轨附加伸缩力的角度考虑时,应该选择在连续梁桥左边跨和相邻一跨简支梁上铺设小阻力高分子材料;当桥梁温度跨度较大时,可将连续梁相邻一跨简支梁的固定支座放置在连续梁桥的边墩处,从而使得连续梁桥温度跨度减小。  相似文献   

3.
温度跨度对桥上无缝线路钢轨伸缩附加力影响很大,是设置钢轨伸缩调节器的关键因素之一。基于连续刚构梁桥墩纵向水平刚度以及两侧简支梁支座布置对桥上无缝线路受力变形的影响,采用理论分析和ANSYS有限元软件研究了连续刚构梁桥上无缝线路温度跨度。结论表明刚构墩刚度越大,温度力作用下钢轨伸缩附加力越小,桥梁变形越小,但影响很小;制动力作用下,梁轨快速相对位移和钢轨制动附加力越小,但影响较大。分析时一般可将连续刚构梁桥简化为仅有一个固定支座且位于其几何中点处的连续梁,温度跨度即为该点到相邻一跨(联)桥上固定支座之间的距离,分析计算精度可满足桥上无缝线路设计检算的需要。研究结果对我国大跨度连续刚构桥桥上无缝线路的建设有着重要的指导作用。  相似文献   

4.
多联大跨连续梁由于桥梁联数较多,温度跨度联数及长度均较大,桥上无缝线路设计需设置多组钢轨伸缩调节器,采取调整连续梁固定支座位置的方式合并相临温度跨,可减少大温度跨度联数,进而达到减少钢轨伸缩调节器设置数量的目的。结合郑西客运专线渭南二跨渭河特大桥多联大跨连续梁桥上无缝线路设计,建立"钢轨-桥梁-墩台"一体化有限元模型进行钢轨纵向附加力的检算,检算结果表明,采用优化桥梁固定支座布置的方式可减少钢轨伸缩调节器设置数量。  相似文献   

5.
大跨度多跨连续梁桥上无缝线路结构设计,不仅在于合理的设置钢轨伸缩调节器及轨道结构,而且固定支座的合理布置同样对减小梁、轨之间的相互作用,并防止线路爬行,保证轨道结构的安全也起着至关重要的作用,本文以某大跨度多跨连续梁桥为例,选定合理的轨道结构型式及桥梁支座布置型式,计算分析伸缩调节器的设置及桥梁固定支座布置对桥上无缝线路纵向力的影响.  相似文献   

6.
广珠城际简支梁墩顶纵向水平线刚度限值研究   总被引:1,自引:0,他引:1  
桥上无缝线路设计是跨区间无缝线路设计的重要组成部分,在桥上铺设无缝线路必须进行梁轨相互作用分析,并对桥梁和轨道结构进行检算。桥上无缝线路钢轨、墩台的纵向力及位移的分布很大程度上取决于桥梁墩台纵向水平线刚度。针对广珠城际铁路的活载类型、轨道结构类型等具体情况,根据桥墩纵向水平线刚度的控制条件,对常见跨度的简支梁桥墩纵向水平线刚度的限值进行了分析计算。  相似文献   

7.
桥墩纵向水平刚度对桥上无缝道岔的影响   总被引:1,自引:1,他引:0  
为了进一步研究桥上无缝道岔,通过计算,分析桥墩纵向水平刚度在连续梁桥上对钢轨、道岔、墩台等结构部件受力及变形的影响。本文采用ANSYS软件建立桥上无缝道岔的岔—桥—墩纵向相互作用一体化模型,并进行力学分析。研究结果是:随着连续梁桥桥墩刚度的增大,基本轨伸缩附加力减小,连续梁桥墩的纵向力增大;增大连续梁桥墩纵向水平刚度对铺设于其上的无缝道岔的受力与变形是有利的。  相似文献   

8.
高速铁路多联大跨连续梁日益增多,而该情况下桥上无缝线路设计经验较少,探讨桥上无缝线路纵向附加力变化规律,对桥梁墩台及桥上无缝线路设计具有重要意义。建立了钢轨-扣件阻力-梁体-墩台一体化空间非线形有限元梁轨相互作用模型,并利用Ansys分析软件进行求解,计算分析了不同扣件阻力及不同桥跨布置工况下桥上无缝线路纵向附加力,并总结出纵向附加力变化规律,对多联大跨连续梁桥上无缝线路及桥墩设计有直接指导作用。  相似文献   

9.
桥梁的温度跨度是影响桥上无缝线路附加力的最重要的因素之一,合理的布置桥梁支座可以有效地减小钢轨伸缩力。综合考虑钢轨、轨枕、扣件、道床及梁跨结构相互作用,建立了连续梁桥上无缝线路梁-轨相互作用模型,重点分析了桥梁支座布置对钢轨伸缩力的影响,通过计算,优化桥梁支座布置形式,减小了钢轨附加力,对桥上无缝线路的设计有一定的指导意义。  相似文献   

10.
为探究活动支座摩阻对大跨连续梁桥上无缝线路梁-轨相互作用的影响,基于梁-轨相互作用及有限元理论,将活动支座摩阻等效为非线性弹簧,建立可考虑活动支座摩阻的连续梁桥上无缝线路空间耦合模型,对考虑活动支座摩阻前、后的钢轨及桥墩结构受力变形展开对比分析。结果表明,活动支座摩阻增强了连续梁与无缝线路的纵向约束,当活动支座摩阻率从0增大至0.06时,温度作用下,连续梁桥上钢轨纵向力及梁轨相对位移峰值分别减小了24.32%和29.89%,连续梁桥固定墩纵向力增加了2.44倍;制动荷载作用下,钢轨制动力、梁轨相对位移及连续梁桥固定墩纵向力分别减小了53.51%、56.94%和41.63%;断轨工况下,部分断轨力通过活动支座摩阻传递给非固定墩,连续梁桥固定墩纵向力减小了60.64%,钢轨断缝值减小了3.3%;活动支座摩阻对大跨连续梁桥上无缝线路及桥墩纵向力影响较大,建议在大跨连续梁桥上无缝线路及桥墩设计中考虑活动支座摩阻的影响。  相似文献   

11.
连续梁桥无缝线路计算分析   总被引:3,自引:3,他引:0  
高应安 《铁道建筑》2005,(11):18-20
文章总结归纳了连续梁桥无缝线路纵向力的计算参数和计算方法,连续梁桥无缝线路调节器采用的铺设方案不同,无缝线路纵向力、梁轨相对位移以及桥梁墩台纵向水平线刚度限值会有明显的差异。连续梁桥无缝线路设计,应根据无缝线路纵向力对桥梁及线路的影响,进行无缝线路调节器设置方案的比选。  相似文献   

12.
本文通过对高速铁路多联大跨连续梁桥上无缝线路设计方案的研究,提出高速铁路多联大跨连续梁桥上无砟无缝线路设计原则及设计方案。研究结果表明:多联大跨连续梁桥上无砟无缝线路设计应优先通过调整固定支座位置,减小桥梁温度跨度,且使各温度跨度尽量均匀分布,以达到不设钢轨伸缩调节器并使桥梁墩台受力不至于过大的目的;必须设置钢轨伸缩调节器时,应对其设置数量进行优化,以尽量少设钢轨伸缩调节器。梁端设置伸缩调节器时,应优先采用单向钢轨伸缩调节器。  相似文献   

13.
中小跨度长联连续梁桥桥上无缝线路纵向力的研究   总被引:4,自引:1,他引:3  
针对固定墩组和拉压连接器两种桥梁结构,分析计算长联连续梁桥无缝线路纵向力。根据桥梁、钢轨的相互作用关系,建立纵向力计算模型,应用该模型,分析比较了桥梁联长、桥墩刚度以及轮轨粘着系数对纵向力的影响。根据附加纵向力的大小以及长钢轨伸缩位移量,提出了长联连续梁的最大联长,在连续梁中间设置钢轨伸缩调节器时,固定墩组桥梁体系连续梁联长应小于500m~600m,拉压连接器桥梁体系连续梁联长应小于1000m~1200m。研究结果表明,桥上无缝线路长钢轨的附加纵向力与桥墩的刚度有关,刚度减小,长钢轨的附加纵向力增加,对桥上无缝线路的强度和稳定性不利,根据长钢轨附加制动力的大小,提出了不同联长的连续梁桥墩刚度的最小限值。  相似文献   

14.
桥上无砟轨道受力比较复杂,桥上无砟轨道无缝线路的稳定性直接影响高速列车的行车平稳与安全。基于有限元法和梁轨相互作用理论,建立了6×32 m混凝土简支梁桥上CRTSⅠ型板式无砟轨道无缝线路空间耦合模型,研究温度荷载作用下钢轨、轨道板及底座板的受力变形特性,并对相关影响参数进行分析。结果表明:在温度荷载作用下,钢轨伸缩力的峰值出现在桥梁墩台及跨中,钢轨的纵向位移呈现先增后减的趋势,在中间两跨达到最大值,钢轨和轨道板的纵向伸缩趋势基本一致,表明扣件起到了很好的约束作用;桥上采用小阻力扣件可改善桥上无缝线路梁轨相互作用,但要充分考虑轨板相对位移不能过大,保证钢轨在桥台处的爬行能够得到有效控制;从减小桥上轨道结构伸缩力及纵向位移考虑,桥梁墩台固定端纵向刚度不宜过大。  相似文献   

15.
温度梯度对高墩桥上无缝线路的影响分析   总被引:3,自引:0,他引:3  
为研究温度对高墩大跨桥上无缝线路的影响,基于梁轨相互作用原理,利用有限元方法,建立线—桥—墩一体化模型,计算高墩大跨桥梁桥墩受到纵向和横向温度梯度荷载时钢轨的纵向力和梁轨相对位移。计算结果表明:桥墩受到纵向温度梯度荷载时钢轨受到的最大压力为523.09 kN,与最大附加伸缩力值584.95 kN接近,纵向温度荷载对桥上无缝线路的影响近似等同于附加伸缩力,在设计桥上无缝线路时必须予以考虑;横向温度梯度荷载对桥梁本身的影响较小,在设计中可以通过安全系数予以控制,在设计中可忽略。分析温度荷载对高墩桥上无缝线路的影响,对于桥梁的安全设计和保证桥上无缝线路的稳定状态均具有一定的指导意义。  相似文献   

16.
针对我国高速铁路桥上CRTSⅡ型板式无砟轨道梁-板-轨相互作用问题,采用有限元法分别建立双线多跨简支梁桥和大跨连续梁桥上CRTSⅡ型板式无砟轨道无缝线路精细化空间耦合模型,考虑桥梁及轨道结构的细部尺寸与力学属性,计算列车荷载作用下各轨道及桥梁结构的挠曲力与位移,分析扣件纵向阻力、滑动层摩擦因数等参数对桥上无缝线路挠曲受力与变形的影响规律。研究结果表明:列车荷载作用下大跨连续梁桥上轨道结构的受力与变形要明显大于多跨简支梁桥,单线加载时有载侧和无载侧之间相差不大,且近为双线加载时的1/2;需要根据不同的检算部件选取最不利的列车荷载作用长度;采用小阻力扣件改善钢轨受力与变形时,固定支座桥台和连续梁活动支座桥墩处的轨板相对位移应加强观测;滑动层摩擦因数、固结机构纵向刚度及固定支座墩/台顶纵向刚度均需控制在合理范围内。  相似文献   

17.
桥上纵连板式无缝道岔计算软件开发与应用   总被引:1,自引:1,他引:0  
运用梁板岔互作用原理,在考虑岔、板、桥和墩台相互作用的基础上,建立适用于各种跨度简支梁、连续梁、刚构桥上的"岔—板—桥—墩"一体化计算模型,可用于对桥上纵连板式无缝道岔伸缩附加力、制动附加力、断轨力、梁轨相对位移及墩台纵向受力和变形的计算分析;为便于计算,以有限元软件ANSYS为计算平台,利用ANSYS参数化设计语言进行二次开发,编制了桥上纵连板式无缝道岔计算软件,适用于各类型桥上道岔群的设计计算。  相似文献   

18.
桥墩纵向水平线刚度对桥上无缝线路设计的影响   总被引:4,自引:0,他引:4  
桥墩纵向水平线刚度是桥梁和无缝线路设计的关键技术参数,桥上无缝线路钢轨与墩台纵向力的分配以及梁、轨位移的大小很大程度上取决于桥墩纵向水平线刚度。结合工程实际,以客运专线常见的60 m 100 m 60m连续梁为例,分析桥墩纵向线刚度对钢轨、墩台纵向力及梁、轨位移的影响规律。  相似文献   

19.
针对双固定墩对桥上无缝线路纵向力的影响开展研究,以某市域铁路为实际工程背景,基于梁轨相互作用原理、非线性有限单元法,建立线-桥-墩一体化计算模型,分析温度变化、列车制(启)动以及断轨工况下双固定墩简支梁桥上无缝线路纵向力变化规律,并以规范要求进行轨道力学检算。计算结果表明,相比普通桥上无缝线路而言,双固定墩对钢轨最大伸缩及制动拉力影响不大,但显著提高伸缩压力的峰值;双固定墩所受纵向力近似为0,但与双固定墩相邻桥墩承受的纵向力增幅达到50%左右;当钢轨在双固定墩处折断时,双固定墩对钢轨断缝有抑制作用;从桥上无缝线路受力角度考虑,当墩刚度低于500 kN/(cm·单线)时,双固定墩桥上无缝线路无需单独进行轨道力学检算,桥梁专业按规范取值进行桥墩检算即可满足工程设计需求。研究结果可为双固定墩桥上无缝线路轨道系统和墩台设计提供参考。  相似文献   

20.
南仓特大桥桥上无缝线路设计   总被引:1,自引:0,他引:1  
研究目的:研究刚构连续梁桥上无缝线路伸缩力的计算方法以及在曲线桥上不能设置伸缩调节器的情况下,如何加强无缝线路稳定性。 研究方法:通过对结构进行分析,建立刚构连续梁力学计算模型,利用计算机程序计算伸缩力;通过分析结构稳定性,研究桥上无缝线路线路加强设备。 研究结果:研制出在路基和桥梁地段都适用的无缝线路加强设备,即横向阻力器,通过实测阻力检算无缝线路稳定性。 研究结论:刚构连续梁可根据其结构建立计算模型计算伸缩力,计算参数宜采用实测数据,线路纵、横向阻力现场实测更重要;桥墩对梁的变形影响随墩刚度增加而增大,当采用高墩即墩顶纵向刚度较小时,影响也较小;横向阻力器制造、搬运和安装均较简单,而且对保证无缝线路稳定性有很大作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号