首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 136 毫秒
1.
研究了应用于固体氧化物燃料电池的BaO-Al2 O3-SiO2系封接玻璃性能.通过DSC、XRD、SEM及热膨胀仪等方法测试分析了不同温度、不同时间热处理的封接玻璃结构与性能.结果表面:在800℃热处理1h后WBa-1、WBa-2、WBa-3的热膨胀系数为10.58×10-6℃-1、10.40×10-6C-1、10.21×t0-6℃-1,热处理5h、10 h的WBa-3组的热膨胀系数为10.07×10-6℃-1、10.33×10-6℃-1,与电解质YSZ、金属连接板Crofer22APU热膨胀系数相匹配.热处理后玻璃的析出的晶相主要为针状的钡长石(BaAl2 Si2 O8),化学稳定性较高.封接玻璃的平均抗折强度可以达到80 MPa.对WBa-3组进行了电性能测试,在450℃、500℃下的电阻率分别为2.03×107 Q·cm、8.56×106 n·cm,对以后的工作有指导作用.  相似文献   

2.
阳极键合用Li2O-Al2O3-SiO2微晶玻璃电学性能   总被引:1,自引:0,他引:1  
采用合适的组分和二步热处理法制备了热膨胀系数与硅片匹配的Li2O-Al2O2-SiO2(LAS)微晶玻璃,并在满足键合所要求的热膨胀系数的基础上,通过调节成分和控制热处理制度,研究了微晶玻璃的导电和介电性能.结果表明:采用不同的热处理制度进行晶化处理,LAS微晶玻璃的主晶相均为β-锂辉石;607℃核化、980℃晶化时间均为3 h样品的热膨胀系数为31.16 ×10℃-1(200~400℃),与硅片热膨胀系数较接近;微晶玻璃的电阻率大于基础玻璃,且随温度的升高电阻率吴下降趋势;改变核化和晶化时间,在150~360℃范围内其电阻率变化不大;微晶玻璃的介电常数和介电损耗均小于基础玻璃,更适宜作为电子器件的绝缘封装材料.  相似文献   

3.
王浩  陆雷  隋普辉  武相萍 《中国陶瓷》2008,44(1):19-22,48
采用差热分析方法研究了LZS系玻璃陶瓷的析晶动力学和析晶过程,讨论了晶化温度对玻璃陶瓷的晶相、显微结构及热膨胀系数的影响.结果表明该LZS系玻璃陶瓷析晶活化能为173.28KJ/mol,晶化指数为2.76,体积析晶趋势较大;晶化温度在775℃以下时,主晶相为硅酸锂锌,次晶相为Li2ZnSiO4并有极少量方石英,为枝状晶体;在此温度上主晶相为方石英,次晶相为硅酸锂锌和Li2ZnSiO4,为粒状晶体,晶粒大小在0.1 5~0.4μm之间.制得的玻璃陶瓷的热膨胀系数在103~137×10-7℃-1之间,大小依赖于晶相与其含量;不同晶化温度下主晶相的热膨胀系数是玻璃陶瓷热膨胀系数的决定性因素.  相似文献   

4.
《玻璃》2020,(6)
研究了应用于固体氧化物燃料电池的BaO-Al_2O_3-SiO_3系封接玻璃性能。通过DSC、XRD、SEM及热膨胀仪等方法,研究了Y_2O_3含量、热处理温度、时间热处理条件下封接玻璃结构与性能。研究结果表明:随着Y_2O_3含量的增加,BaO-Al_2O_3-SiO_2封接玻璃,析出的晶体主要是板柱的六方钡长石H-BaAl_2Si_2O_8。玻璃析晶后其微观结构致密,微晶玻璃的热膨胀系数由10.51×10~(-6)·℃~(-1)降低到10.27×10~(-6)·℃~(-1)。Y-1封接玻璃料浆与8YSZ电解质在900℃下热处理2h完成封接,并于820℃下烧结与微晶化10 h,封接玻璃与8YSZ电解质封接界面之间无裂纹、孔洞、反应层的形成,界面结合性能良好。Y-1微晶玻璃在450℃、500℃电阻率为2.27×10~8W·cm、3.71×10~7W·cm。Y-2玻璃在450℃、500℃电阻率为2.21×10~8 W·cm、2.31×10~7 W·cm。  相似文献   

5.
燃料电池的长寿命安全使用对相关联的封接玻璃提出了更高的要求,为明确封接玻璃的组成和晶相析出对封接玻璃转变温度、热膨胀系数等的影响规律.以BaO-Al2O3-B2O3-SiO2作为基础玻璃体系,通过测试玻璃的DSC、XRD、CTE等性能参数,研究组成中BaO含量和热处理制度对玻璃封接性能的影响.结果 表明,BaO能够增大玻璃的热膨胀系数,降低玻璃的特征温度.随着BaO含量的增加,基础玻璃的CTE从9.24×10-6 K-1增加到11.26×10-6 K-1.其中B3组玻璃满足SOFC的使用要求,可用作封接玻璃.B3组基础玻璃在模拟电池的工作温度下热处理后,主晶相为正交晶系的BaSiO3,微晶玻璃的膨胀系数提高至10.53×10-6 K-1,同样能够满足与电解质YSZ(CTE:10.5×10-6K-1)、以及Corfer22APU连接板(CTE:12×10-6 K-1)的匹配要求;析晶后玻璃的软化温度提高至830℃,提高了封接玻璃的使用温度,在SOFC工作温度(700 ~ 800℃)下,所制备的封接微晶玻璃在软化温度以下不会过度流动,能够保证良好的密封,满足封接的功能需求.  相似文献   

6.
采用熔体冷却析晶法制备了白榴石。利用X射线衍射分析、扫描电镜、热膨胀系数测试、抗折强度测试研究了不同的成分及析晶温度对白榴石析晶、热膨胀系数及其对牙科材料增强作用的影响。结果表明,当化学成分接近白榴石理论含量,Al2O3微过量,析晶温度为1100℃时,样品的析晶能力最好,热膨胀系数最高为20.13×10-6℃-1(20~500℃)。并且,白榴石掺杂可以有效提高牙科玻璃陶瓷的抗折强度和热膨胀系数,当掺杂量为50%时,材料的抗折强度提高到127.43 MPa,热膨胀系数提高到15.72×10-6℃-1。  相似文献   

7.
用X射线衍射、差示扫描量热法和热膨胀系数测试研究了BaO-Al2O3-SiO2(BAS)系微晶玻璃的不同晶化时间对其相组成和热膨胀系数的影响.结果表明:在850 ℃,BAS玻璃快速晶化析出六方钡长石;随着晶化时间的延长,六方钡长石逐渐向单斜钡长石转变;当晶化时间为24 h时,六方钡长石完全转变为单斜钡长石.微晶玻璃的相组成与热膨胀系数的关系近似满足两相模型,可通过改变晶化时间来控制相组成,方便的获得热膨胀系数在(4~8.75)×10-6/℃范围内可调整的BAS系微晶玻璃.  相似文献   

8.
采用高温熔融法制备了MgO-Al2O3-SiO2 (MAS)系堇青石基微晶玻璃.借助X射线衍射仪(XRD)、扫描电镜(SEM)及热膨胀系数仪研究了晶化热处理工艺、MgO/Al2O3质量比以及晶核剂种类(TiO2/ZrO2)与含量对MAS系堇青石基微晶玻璃理化性能和晶化特性的影响.结果表明:在核化温度750℃、保温时间1h,晶化温度1050℃、保温时间2.5h,升温速率5 ℃/min时,微晶玻璃中堇青石含量最高,析晶性能最好;当MgO/Al2O3质量比为1左右时,在30 ~ 700℃温度范围内,平均热膨胀系数最小,在4.4 ~4.8×10-6K-1范围内可调;TiO2是MAS系堇青石基微晶玻璃的有效晶核剂,而ZrO2的加入并不利于基础玻璃的晶化.  相似文献   

9.
赵莹  陆雷  张乐军  王浩 《中国陶瓷》2007,43(4):10-14
制备了Li2O-Al2O3-SiO2系微晶玻璃,采用差热分析(DTA)、X衍射分析(XRD)和扫描电镜(SEM)等分析手段对该系统微晶玻璃的析晶过程和微观结构进行了研究。通过正交实验讨论了热处理温度及时间对微晶玻璃热膨胀性能的影响。结果表明:通过热处理工艺来控制晶相的析出,析晶初始温度下首先析出的晶相为β-石英固溶体,随晶化温度升高β-石英固溶体转变为β-锂辉石固溶体,可以使样品的热膨胀性能符合要求。获得较小热膨胀系数的热处理工艺为:核化温度620℃,核化时间1小时,晶化温度840℃,晶化时间3小时。所获得的微晶玻璃的热膨胀系数为9.510-7/℃,可作为低膨胀材料使用。  相似文献   

10.
用BaO-Al2O3-B2O3-SiO2玻璃与二氧化硅复合的方法制备了高膨胀系数低温共烧陶瓷。实验首先制备一组玻璃材料,通过热膨胀测试、DTA等方法研究了玻璃的热学性能,然后用玻璃与石英、方石英和鳞石英晶体按一定比例复合制得高膨胀低温共烧陶瓷。通过烧结试验、XRD等分析方法研究了复相陶瓷材料的烧结收缩性能、晶相组成、热膨胀系数和介电常数。结果表明:50%BaO-7.5%Al2O3-30%B2O3-12.5%SiO2玻璃具有较低的转变温度(520℃)。该玻璃与鳞石英晶体以1:1的比例复合,850℃/10min烧结可以获得热膨胀系数为12.18×10-6K-1、介电常数为5.37的低温共烧陶瓷。  相似文献   

11.
借助DTA,XRD和SEM等测试手段,研究了TiO_2和热处理温度对高镁钢渣微晶玻璃性能的影响。实验结果表明,随着TiO_2质量分数增加,微晶玻璃的玻璃化温度和析晶温度降低,抗弯强度和维氏硬度提高,热膨胀系数下降;随着热处理温度的提高,微晶玻璃的热膨胀系数下降,抗弯强度和维氏硬度在1 100℃达到最高。同时整个样品结构由玻璃相为连续相过渡为晶体为连续性相,主晶相是MgSiO_3。  相似文献   

12.
采用固相反应制备了(1-x)Ba3(VO4)2-xLi2MoO4微波介质陶瓷,研究了掺入不同质量比的Li2MoO4对Ba3(VO4)2的微观结构和微波介质性能影响,X线衍射(XRD)测试结果表明,Ba3(VO4)2和Li2MoO4二者兼容性良好,无第二相产生。添加具有低熔点及相反(负)频率温度系数的Li2 MoO4能有效降低Ba3( VO4)2的烧结温度,并随着添加剂Li2 MoO4的增加,此复合陶瓷的相对体密度、介电常数εr 和品质因数Q ×f呈现出先增加随后又降低的趋势,而谐振频率里面温度系数τf逐渐降低。当烧结温度为660℃且添加量30wt%Li2 MoO4的复合微波介质陶瓷获得了最佳的微波介电性能:εr =11.99, Q ×f=39700 GHz,τf =-24 ppm/℃。  相似文献   

13.
赵春霞  范仕刚  刘杰  何粲  李跃 《硅酸盐通报》2022,41(11):3870-3876
采用熔融法制备了Li2O-Al2O3-SiO2系透明玻璃,以TiO2、ZrO2和P2O5为复合晶核剂对该玻璃进行热处理,获得了超低膨胀微晶玻璃。采用正交试验研究了热处理工艺参数对微晶玻璃热膨胀系数的影响,并通过计算分析获得了最优的热处理工艺参数,即核化温度为600 ℃,核化时间为3 h,晶化温度为820 ℃,晶化时间为5 h。在此热处理工艺制度下获得的微晶玻璃主晶相为β-石英固溶体,热膨胀系数为1.6×10-8-1。采用差热分析、X射线衍射分析、扫描电子显微镜分析、透射电子显微镜分析等手段研究了微晶玻璃的析晶情况和微观结构,并进一步分析了热处理工艺与微晶玻璃热膨胀性能和微观结构之间的对应关系。结果表明,微晶玻璃的热膨胀系数由晶相种类和含量决定,微晶玻璃内部晶相的尺寸和含量与热处理工艺密切相关。  相似文献   

14.
以分析纯Er2O3和WO3为原料,采用固相法制备Er2W3O12陶瓷,并利用X射线衍射仪(XRD)、场发射扫描电镜(FESEM)和热重分析仪(TG)对其结构组分、断面形貌和吸湿特性进行表征.采用热膨胀仪和变温XRD对Er2W3O12陶瓷的负热膨胀特性进行表征.结果表明:在950 ℃烧结6 h制得的Er2W3O12陶瓷结构致密.Er2W3O12材料在室温下容易吸湿,在120 ℃完全失去吸湿水,表现为正交相的Er2W3O12陶瓷,具有良好的负热膨胀性能,其在138~700 ℃的平均热膨胀系数为-7.94×10-6 K-1.变温XRD分析发现:Er2W3O12陶瓷沿三个晶轴方向均表现为负热膨胀,在100~600 ℃温度区间内,Er2W3O12陶瓷的热膨胀系数为-7.81×10-6 K-1.  相似文献   

15.
低温低膨胀系数高硬度无铅电子玻璃粉   总被引:2,自引:0,他引:2  
叙述了低温低膨胀系数无铅电子玻璃粉研制过程。当Bi2O3的质量分数在60%,B2O3在10.7%,ZnO在21.3%,SiO2在5%,其它成分在3%时,可获得膨胀系数为(55~62)×10-7/℃,软化点为380~385℃,玻化温度在450±10℃,附着力优良的无铅玻璃粉。  相似文献   

16.
通过传统熔融法制备了添加MgO,ZnO和BaO的Li2O-Al2O3-SiO2(Las)微晶玻璃.并通过微分热分析、X射线衍射和扫描电镜研究了MgO, ZnO和BaO对LAS玻璃的结晶化影响.测量了LAS的热膨胀系数(coefficient ofthermal expansion.CTE).结果表明:添加1.0%~1.5%质量分数,不同)MgO,1.0%~3.0%ZnO或1.5%~3.5%BaO的LAS微晶玻璃在500℃以下都表现出负的热膨胀性.随着MgO含量的减少,形成了β锂辉石固溶体(LiAlSi3O8)并导致CTE显著增大.当添加0.5%MgO时,从100~700℃具有0.5120×10-6℃到1.691 3×10-6/℃的正膨胀系数.  相似文献   

17.
海韵  徐博  殷先印  朱宝京  韩滨  祖成奎 《硅酸盐通报》2022,41(11):3997-4002
PbO-CaO-B2O3-SiO2系玻璃粉体是耐高过载低温共烧陶瓷(LTCC)生瓷带的主要组成部分。玻璃粉体的析晶行为影响烧结性能,进而决定基板的使用性能。本文研究了Al2O3含量对PbO-CaO-B2O3-SiO2系玻璃析晶行为与烧结性能的影响。结果表明:向PbO-CaO-B2O3-SiO2系玻璃中引入Al2O3可抑制玻璃析晶,防止高膨胀晶相的析出,并提高玻璃烧结密度;不含Al2O3的PbO-CaO-B2O3-SiO2玻璃粉体析晶峰温度为862 ℃,烧结过程中析出方石英晶相,20~200 ℃的平均线膨胀系数高达260.8×10-7-1;引入2.1%(质量分数)Al2O3可显著抑制玻璃析晶,700 ℃烧结后膨胀系数降低至72.9×10-7-1,介电常数显著增大,由6.30提高至7.02。  相似文献   

18.
采用电子陶瓷工艺制备了一系列钙长石/玻璃复合材料,并对复合材料进行X射线分析、扫描电镜观察和性能测试。结果表明:复合材料的介电常数、热膨胀系数随钙长石含量的增加而增加,而介电损耗和抗折强度随钙长石含量的增加而减小。钙长石含量大于50wt%的复合材料中α-石英和方石英的析出增加了材料的热膨胀系数,但对材料的介电性能影响不大。所制备的复合材料具有低的介电常数(5.4~6.1)、低的介电损耗(0.11%~0.41%)、低的热膨胀系数(4.3×10^-6~6.1×10^-6/℃)和低的烧结温度(≤900℃),有望用于电子封装领域。  相似文献   

19.
设计玻璃组成及晶化工艺提高Li2O-Al2O3-SiO2微晶玻璃的强度是当前亟需解决的问题。本文通过熔融浇铸法制备了具有特定组成的Li2O-Al2O3-SiO2玻璃,通过两步热处理方法制备了高强度半透光微晶玻璃。差示扫描热分析结果显示玻璃的转变温度为532 ℃,且有多个析晶峰。热处理后,X射线衍射证明了玻璃中析出以Li2Si2O5、LiAlSi3O8、LiAlSi4O10为主晶相的晶体,且随着热处理温度的上升或时间延长,透锂长石逐渐转变为锂辉石晶相,晶粒尺寸也从70 nm(热处理条件为:750 ℃,0.5 h和780 ℃,10 h)生长至340 nm(热处理条件为:820 ℃,0.5 h和850 ℃,4 h),微晶玻璃从半透光转变为完全乳浊。微晶玻璃具有优异的机械性能,维氏硬度最大可达9.15 GPa,环上环的最大负载可达1 335 N,最大整机跌落高度可达162 cm。此微晶玻璃可用于手机等电子器件的背板保护玻璃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号