首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的制备高性能NiFe1.98Nd0.02O4-Fe双层吸波涂层。方法采用溶胶凝胶自燃烧法制备钕掺杂NiFe1.98Nd0.02O4。借助X射线衍射仪、扫描电镜和矢量网络分析仪对NiFe1.98Nd0.02O4和羰基铁的结构、形貌、电磁参数进行测试分析。采用遗传算法对NiFe1.98Nd0.02O4-羰基铁双层涂层的厚度进行优化设计。结果以环氧树脂为基体,以羰基铁和NiFe1.98Nd0.02O4为吸波剂的双层吸波涂层具备较好的吸波性能,厚度约1 mm,反射率在9.25~11.35 GHz范围内均小于-10 dB。结论 NiFe1.98Nd0.02O4层和羰基铁层在吸波性能上有很好的互补性,理论优化结果和实验结果相同。  相似文献   

2.
目的研究分散剂PVP对Fe_3O_4在石墨烯表面分散性的影响,以获得吸波性能良好的吸波材料。方法采用溶剂热法制备石墨烯/Fe_3O_4复合吸波材料,通过扫描电子显微镜、X射线衍射分析仪、X射线光电子能谱、矢量网络分析仪等对石墨烯/Fe_3O_4复合吸波材料进行表征,并研究了PVP添加与否在石墨烯/Fe_3O_4复合吸波材料形貌及吸波性能的影响。结果添加PVP后的石墨烯/Fe_3O_4复合吸波材料与未添加PVP的相比,Fe_3O_4在石墨烯表面的团聚现象明显减少,尺寸显著减小。通过计算机模拟反射率,未添加PVP的石墨烯/Fe_3O_4复合吸波材料在匹配厚度d=2.00 mm时,在16.25 GHz处达到最大反射损耗-18.79 dB,复合材料反射损耗小于-10 dB的频带宽度可达4.1 GHz。添加PVP的复合材料在匹配厚度d=2.00 mm时,在16.25 GHz处达到最大反射损耗-25.88 dB,复合材料反射损耗小于-10 dB的频带宽度可达4.5 GHz,相比未添加PVP的复合吸波材料,反射损耗小于-10 dB的频带宽度增加0.4 GHz,最大反射损耗提高7.09 dB。结论 PVP能提高Fe_3O_4在石墨烯表面的分散性,并在石墨烯表面形成良好的导电网络,使复合材料的吸波性能明显提升。  相似文献   

3.
首先利用溶胶-凝胶法制备SiO_2-SiC复合粉体,采用SEM、XRD、DSC-TG等技术对复合粉体进行表征.结果表明,溶胶-凝胶法能够制备具有核-壳结构SiO_2-SiC复合粉体.再将SiO_2-SiC复合粉体与BaTiO_3、Fe_3O_4以及环氧树脂以不同比例进行混合固化制得吸波材料样品,采用矢量网络分析仪测量样品的反射率.结果表明,SiO_2-SiC复合粉体具有一定的吸波效果,20%含量的SiO_2-SiC复合粉体样品在18 GHz时反射率达-2.07 dB,BaTiO_3、Fe_3O_4的加入实现复合吸波效果,当SiO_2-SiC:BaTiO_3:Fe_3O_4=6:2:2(体积分数,下同)时,在5.75 GHz时反射率达到-13.97 dB,合格带宽为10.08 GHz.  相似文献   

4.
采用溶胶凝胶法制备了平面六角铁氧体,并用扫描电镜 (SEM),X射线衍射仪 (XRD) 对它的形貌以及相结构进行了表征,用矢量网络分析仪 (VAZ) 研究了不同比例的Ni/铁氧体混合物的微波吸收性能。结果发现,随着混合物中的平面六角铁氧体含量增多,混合物的微波吸波吸收峰向高频方向移动,当混合物由 20%Ni + 80% 铁氧体组成时,混合物的微波吸收性能最佳。当吸波涂层厚度为 2 mm时,在12 GHz 处,最小反射率为–20 dB,小于–10 dB的带宽达到了4 GHz。当吸波涂层厚度增加时,吸收峰频率向低频移动,吸收峰值先变小,后增大。当厚度达到一定值时,混合物在 2~18 GHz 之间出现 2 个吸收峰,这对于研究宽频吸收具有重要意义。  相似文献   

5.
空气层匹配碳纤维吸波涂层的吸波性能   总被引:1,自引:1,他引:0  
陶睿  刘朝辉  班国东  罗平 《表面技术》2017,46(10):201-206
目的探究空气层匹配厚度及碳纤维含量、长度对碳纤维吸波涂层吸波性能的影响。方法以短切碳纤维为吸收剂,水性聚氨酯为基体树脂,制备雷达吸波涂层。采用扫描电子显微镜和金相显微镜对短切碳纤维和涂层的微观形貌进行分析表征,将碳纤维涂层与空气层进行匹配,并采用矢量网络分析仪测试分析涂层的吸波性能。结果当空气匹配层厚度由1 mm逐渐增加到3.5 mm时,复合涂层的最大吸收峰由高频逐渐向低频移动。匹配厚度为3 mm时,反射率峰值最低(-41 d B)。匹配厚度为2.5 mm时,有效吸收频段(反射率-10 d B)最宽,为8.6~18 GHz。随着碳纤维含量的增加,涂层的最大吸收峰频率均呈下降趋势,有效吸收频段向低频移动。碳纤维含量(质量分数)低于0.1%时,只有碳纤维长度达到3 mm,涂层才具备有效吸波性能。碳纤维含量为0.1%~0.2%,碳纤维长度为2 mm时,涂层吸波性能最好。碳纤维含量超出0.2%,碳纤维长度为1 mm时,涂层已经具备较好的吸波性能。结论通过调节空气层匹配厚度及碳纤维含量、长度,空气层匹配碳纤维吸波涂层在不同频段均能实现对电磁波的有效吸收。  相似文献   

6.
采用金属有机化学气相沉积(MOCVD)工艺,以高纯Fe(CO)5和SrFe12O19为原料,高纯N2为载气,在SrFe12O19表面沉积连续Fe膜,从而制得Fe-SrFe12O19复合材料.用XRD,SEM,EDS和矢量网络分析仪对粉末的结构及电磁性能进行表征并对其吸波性能进行研究.结果表明,SrFe12O19表面沉积的膜层为纯a-Fe相,厚度约为0.5mm,沉积薄膜比较均匀完整地覆盖在SrFe12O19表面.SrFe12O19表面沉积a-Fe膜后,其电磁性能发生明显改变,吸波性能有较好改善.沉积时间30min时制备的样品有最佳的吸波效果,涂层厚度为1.5~3.0mm时,最小反射率均低于-19dB,在6.8~18.0GHz均能实现吸波强度低于-10 dB.随着厚度的增加,反射率峰值先减少后增加,厚度为2.0 mm时,达到最小值-21.2 dB.  相似文献   

7.
Y-Fe-Cr合金的微波吸收性能   总被引:4,自引:0,他引:4  
采用电弧熔炼法与高能球磨相结合的方法制备Y-Fe-Cr合金微粉,将制得的合金微粉放在真空石英管中在850℃下退火2h,采用XRD和SEM对合金粉的相结构及颗粒形貌进行分析,最后利用矢量网络分析仪对合金粉末的吸波性能进行分析;并以Y11Fe86Cr3为例研究热处理对Y-Fe-Cr合金微粉吸波性能的影响。结果表明:在吸波涂层厚度(d)为1.5mm的条件下,YxFe97-xCr3(x=7,9,11,13,摩尔分数,%)合金微粉都具有较好的宽频特性,在低频端,Y9Fe88Cr3的吸波性能优于其他合金的吸波性能,在7~18GHz频率范围内,Y7Fe90Cr3、Y11Fe86Cr3和Y13Fe84Cr3的反射率均小于-6dB;在d为1.8mm的条件下,在吸收峰附近,热处理后合金的反射率较热处理前的反射率得到明显改善,热处理前合金的吸收峰值为-10.5dB左右,而热处理后合金的吸收峰值达到-13.8dB左右,而且小于-10dB的带宽达到5GHz;在偏离吸收峰处,热处理不但达不到改善合金吸波性能的目的,甚至使合金的吸波性能变差。  相似文献   

8.
针对FeCuNbSiB非晶带材与环氧树脂基体不浸润的难题,通过表面化学改性,在FeCuNbSiB非晶带材两面分别生成一层厚度5~10μm、相结构为Cu_(0.75)Fe_(2.25)O_4和Fe_3O_4的界面层。结果表明:界面层与带材结合强度高,与环氧树脂浸润性好;以FeCuNbSiB非晶带材为增强材料,同时按FSS网络设计的FeCuNbSiB非晶带材/环氧树脂铺层在13~18 GHz频带出现R=-5~-10 dB的吸收峰。增加铺层数,吸收峰值不变,但吸收峰频带往低频率方向移动。利用此特性可以修正其它复合材料的雷达波吸波特性,拓宽吸收频带,增加吸波性能。  相似文献   

9.
采用静电纺丝法制备不同成分的NiZn铁氧体纳米纤维,然后采用超声法将其与还原氧化石墨烯(RGO)溶液合成得到石墨烯/Ni_xZn_((1-x))Fe_2O_4(x=0,0.3,0.5)软磁复合材料,并使用XRD、SEM和VNA(矢量网络分析仪)等设备对其吸波性能进行表征。实验结果表明:x=0.5时,石墨烯/Ni_(0.5)Zn_(0.5)Fe_2O_4复合材料在6.28GHz频率下的反射损耗(RL)可达极值-41.51dB,与其相对应的试样厚度仅为4.0mm,且低于-10dB的频宽可达2.53GHz。由于RL值低于-10dB表示超过90%的入射电磁波可以被吸收,故石墨烯/Ni_(0.5)Zn_(0.5)Fe_2O_4复合材料具有较好的吸波性能。  相似文献   

10.
采用溶胶凝胶法制备了平面六角铁氧体,并用扫描电镜(SEM),X射线衍射仪(XRD)对它的形貌以及相结构进行了表征,用矢量网络分析仪(VAZ)研究了不同比例的Ni/铁氧体混合物的微波吸收性能。结果发现,随着混合物中的平面六角铁氧体含量增多,混合物的微波吸波吸收峰向高频方向移动,当混合物由20%Ni+80%铁氧体组成时,混合物的微波吸收性能最佳。当吸波涂层厚度为2 mm时,在12 GHz处,最小反射率为–20 d B,小于–10 d B的带宽达到了4 GHz。当吸波涂层厚度增加时,吸收峰频率向低频移动,吸收峰值先变小,后增大。当厚度达到一定值时,混合物在2~18 GHz之间出现2个吸收峰,这对于研究宽频吸收具有重要意义。  相似文献   

11.
目的 解决吸波剂羰基铁粉颗粒(CIP)构成的吸波涂层存在密度较大、涂层厚度过大的问题.方法 利用三维多孔结构降低复合吸波涂层的密度并改善阻抗失配,从而构筑轻质宽频羰基铁粉复合吸波涂层.利用有限元分析软件建立了羰基铁粉/石蜡复合多孔吸波涂层的仿真模型,通过仿真研究了三维多孔结构的孔隙率、孔径和孔隙分布方式对复合吸波涂层性能(最小反射损耗、有效吸收带宽、峰值吸收频率和密度)的影响规律,揭示了羰基铁粉多孔结构的吸波机理,并确定了具有最佳综合性能的羰基铁粉三维多孔复合吸波涂层的结构参数.结果 随着孔隙率的增加,涂层密度减小且峰值吸收频率向高频移动;而随着孔径的减小,涂层除峰值吸收频率向高频移动外,最小反射损耗和有效吸收带宽分别呈减低和增加的趋势,吸波性能得到有效改善.孔隙分布方面,在随机、有序、梯度递减和梯度递增4种分布方式中,梯度递减分布表现出最佳的吸波性能.相较于无孔结构,羰基铁粉质量分数为75%、孔隙率为16%、孔径为0.325 mm、孔隙呈梯度递减分布的三维多孔涂层,其有效吸收带宽(RL<–10 dB)拓展了49.3%(从4.10 GHz增加到6.12 GHz),密度降低了4%(从2.71 g/cm3降低到2.6 g/cm3),而最小反射损耗仅仅损失0.7%.结论 多孔结构的引入可以实现羰基铁粉涂层轻质、宽频吸波的目的.  相似文献   

12.
采用尿素络合硝酸铁、硝酸镍制成的掺杂铁镍离子的安全性复合炸药,爆轰合成了碳包覆纳米坡莫合金复合粒子。通过TEM、XRD、Raman光谱对纳米粒子进行了形貌、结构和成分分析表明,所合成纳米粒子呈球形核壳结构,粒径为40~60nm,中心为铁镍合金核,外包覆层为石墨层与无定形碳。为检验所合成的碳包覆坡莫合金粒子的电磁波吸收性能,将之与石蜡制成复合涂层,通过矢量网格分析仪,在2~18 GHz吸收频段对不同厚度复合涂层进行了电磁损耗能力测定。结果表明,当涂层厚度为2mm时,铁镍原子比1:4纳米粒子的吸波层出现了双吸收峰,峰值分别为-14.6dB (9.7 GHz)和-7.7 dB (14.3 GHz),-10 dB吸收频带范围为8.5~11.8 GHz;而铁镍原子比1:1纳米粒子的吸波层吸收波峰在12.88 GHz,峰值为-30,-10 dB的吸收频带范围为9.7~14.4 GHz,具有较宽吸收频带和优良的吸波性能。  相似文献   

13.
以Li_2CO_3和Fe_2O_3粉末为原料,通过高温固相煅烧、喷雾造粒及热处理制备出纯净单相的Li_(0.5)Fe_(2.5)O_4热喷涂粉体,采用等离子喷涂技术在Q235钢表面沉积出Li_(0.5)Fe_(2.5)O_4铁氧体涂层,并研究其微观组织结构、物理电气和耐腐蚀性能。结果表明,热喷涂制备的Li_(0.5)Fe_(2.5)O_4涂层表面致密均匀,平均孔隙率为4.1%,且与钢基体具有良好的界面结合,结合强度平均值为27.6 MPa,涂层电阻率为2.14×10~(-5)Ω·m,且涂层耐电化学腐蚀性能良好,3.5%NaCl溶液介质中的平均腐蚀速率约为0.003 7 mm/a,显示等离子喷涂制备的高质量Li_(0.5)Fe_(2.5)O_4涂层可较好满足接地材料防护涂层对其耐蚀和导电性方面的要求,可作为一种有效的腐蚀防护措施应用在传统钢质接地材料防腐工程中。  相似文献   

14.
热喷涂纳米β-SiC/LBS涂层的吸波性能   总被引:1,自引:0,他引:1  
应用喷雾造粒技术对纳米β-SiC/LBS复合吸波粉末进行团聚造粒,采用超音速火焰喷涂工艺制备高温纳米复合吸波涂层,并对复合涂层性能进行研究.结果表明,颗粒状β-SiC弥散在半熔融状态的LBS中形成涂层.涂层与基体的结合强度为8.46 MPa,拉伸过程中,涂层从内部撕裂,并表现为脆性断裂.与普通陶瓷吸波涂层相比,复合涂层的吸波性能得到扩展;随着涂层厚度的增加,复合涂层对电磁波的衰减能力将从高频向低频移动.受到涂层抗拉强度的限制,复合涂层的厚度应该小于1 mm.纳米β-SiC含量(质量分数)为46%时,复合涂层的电磁波反射率系数达到-13 dB;当在涂层厚度相同而微波频率大于14 GHz时,复合涂层的电磁波反射率系数均小于-10 dB.数值模拟结果表明,当β-SiC质量含量为46%时,复合涂层的吸波性能最佳.  相似文献   

15.
本研究将磁性吸波涂层融入至超材料的结构设计中,得到了一种新型低频复合超材料吸波体,吸波体由环形电阻膜、双层磁性吸波涂层和金属背板组成。采用CST仿真软件计算了超材料吸波体的吸收性能,研究了吸波体各个结构参数对吸收性能的影响。仿真结果表明,设计的超材料吸波体厚度为2.5 mm时,在1.9和4 GHz处存在2个吸收峰,在1.59~6.59GHz频率范围内反射损耗低于-8dB,吸收带宽达到5GHz。通过吸波体电磁场分布对吸波机理进行了讨论。结果表明,吸波体低频吸收带宽的增加是由于表面的电阻膜图案改变了超材料吸波体的电场分布和磁场分布,促进了磁介质层的损耗。最后制备了吸波体样品并进行了反射率测试,实物测试结果与仿真结果基本一致,说明设计制备的吸波体具有优异的低频吸波性能,吸波带宽相比磁性吸波涂层大幅提高。  相似文献   

16.
采用耐温的磷酸盐玻璃和改性的β–SiC吸收剂的热喷涂材料体系,使用火焰喷涂工艺制备了热喷涂雷达吸波涂层,对粉末、涂层制备过程及性能进行了研究,结果表明:喷雾干燥造粒是制备热喷涂雷达吸波涂层粉末材料体系的合理方法,使用火焰喷涂制备的涂层,吸收剂含量为20%时,涂层性能最佳,当涂层厚度为1 mm时,在1.2×1010~1.8×1010 Hz范围内,涂层反射率均低于-8 dB。  相似文献   

17.
目的制备吸波性能优异的碳基复合吸波涂层。方法采用液相法在导电炭黑(CB)体系中原位生长还原氧化石墨烯(RGO)材料,合成了CB/RGO复合吸收剂,并以环氧树脂为基体制备了CB/RGO复合涂层。利用扫描电子显微镜(SEM)和透射电子显微镜(TEM)对制备的CB/RGO复合吸收剂进行微观结构表征,研究了吸收剂填充量和厚度对涂层电磁性能的影响规律。结果微观结构分析表明,CB以一种类似“葡萄状”的结构形态附着在石墨烯片层之间,在其表面实现包覆性生长,分散均匀且具有较好的附着力;制备的CB/RGO复合涂层质地均匀,密度仅为1.1 g/cm^3,兼具轻质柔性的特征。微波反射率测试结果显示,在高填充量3.0%和3.7%下,涂层均未表现出明显的强电磁吸收能力,而在低填充量1.6%和2.3%下,涂层表现出十分优异的微波吸收性能。结论当填充量为2.3%、厚度为1.9 mm时,涂层表现出最佳的吸波性能,最大吸波强度为−17.1 dB,有效吸波频宽达到6.63 GHz,覆盖整个测量频段的66.3%,显示出良好的宽频吸波性能。另外,当厚度为2.5 mm时,填充量为2.3%的涂层实现了雷达波在X波段的微波全吸收。  相似文献   

18.
空心微珠表面化学镀Ni-P合金及其吸波性能研究   总被引:2,自引:1,他引:1  
采用化学镀法在平均粒径2 μm的空心微珠表面包覆了均匀完整的Ni-P非晶合金镀层,并对该材料进行了电磁性能和吸波性能测试.测试结果表明:空心微珠包覆Ni-P非晶合金镀层后矫顽力达到343.08Oe,属于电磁损耗型材料;以包覆后的空心微珠粉体为吸收荆制备吸波涂层,当涂层厚度为3 mm时,在4.32GHz达到最强吸收-20.81 dB,当涂层厚度为1.5 mm时,在8.56~10.08 GHz内出现了小于-10 dB的较宽吸收.  相似文献   

19.
采用MOCVD工艺在微米级Ni0.4Zn0.2Mn0.4Ce0.06Fe1.94O4(NZMCF)表面原位生长了纳米级羰基铁(CI)壳层,通过控制沉积温度,调控核壳形貌和吸波性能,得到了具有核壳结构的NZMCF -CI复合吸波剂,利用XRD、SEM、EDS及VNA等分析手段,重点研究了沉积温度对NZMCF -CI核壳粉体微观形貌、晶体结构、电磁参数及吸波性能的影响。结果表明:通过调节沉积温度,可以有效调控核壳粉体的形貌,进而调控吸波性能。沉积温度为220 ℃,NZMCF-CI核壳粉体具有最佳的形貌及吸波性能。利用测得的同轴环样品的电磁参数,计算出NZMCF -CI涂层在厚度为1.8 mm时,反射率最小值为-39.9 dB,小于-10 dB的吸波带宽为14.2 GHz(3.8~18 GHz)。涂层厚度为0.8~2.6mm时,在3.2~ 18 GHz均能实现最小反射率低于-20 dB,在2.5~18 GHz均能实现最小反射率低于-10 dB。仅需要调整厚度,即可以实现2~18 GHz内良好的吸波效果。  相似文献   

20.
为获得低频宽带吸波材料,本文采用共沉淀和原位聚合技术制备了羰基铁/CoFe2O4/PANI三元复合材料,并以此为介质层,借鉴超材料思想,设计了一种基于超材料结构的羰基铁复合吸波涂层,改善了低频吸波性能。分析了超材料的结构设计对羰基铁/CoFe2O4/PANI涂层吸波性能的影响,并对赋予超材料结构后的复合涂层的吸波机理进行了研究和讨论。通过仿真优化发现,在电阻膜方阻值为10mΩ/□和镂空十字电阻膜图案尺寸达到最佳时,在相同厚度下赋予超材料结构后的复合涂层具有比单一羰基铁涂层更宽的吸收频带以及更低的吸收频率,在3.8-6.9GHz频段内反射率均小于-10dB。研究表明,将超材料结构融入到羰基铁涂层性能改进中,能够有效提升其低频吸波性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号