首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
钱锋  杨名宇  张晓沛 《光学精密工程》2016,24(11):2880-2888
针对激光模拟射击系统对激光光斑进行快速、高精度质心定位的要求,提出了一种基于视频序列图像的光斑检测与高精度质心定位方法。该方法首先利用帧间差分图像和噪声估计参数对射击突发事件进行检测;然后利用噪声估计方法确定光斑的分割阈值,结合形态学滤波对目标光斑和背景噪声进行有效分割,提取光斑区域,同时降低窗口内外噪声。最后,用4帧差分图像合成1帧高分辨率的图像来抑制图像噪声和计算误差的影响,实现光斑质心的高精度定位。实验结果表明,本文方法的光斑质心定位精度与稳定性均优于传统的方法;其中光斑质心定位精度达到了亚像素级别,稳定性度量平均值为0.000 49,优于传统方法的0.002 97。得到的结果显示,提出的方法有助于提升激光射击系统的性能。  相似文献   

2.
分析了光斑图像成像特点和理想光斑灰度分布模型,针对含有多个不同尺度光斑的图像,提出了一种可以在复杂环境下一次性快速检测出多个光斑中心的方法。该方法基于高斯模糊后光斑中心不变的性质,先对含有大量光斑的图像进行快速多级高斯模糊,构建其高斯尺度空间;然后,使用加速的非极大值抑制方法在尺度空间内寻找多个尺度的局部极值,初步确定各光斑中心的像素级坐标;最后,联合这些坐标的邻域像素,拟合局部曲面,得到光斑中心的亚像素级精确位置。利用仿真实验和实物实验验证了提出方法的有效性。结果表明:该算法对640pixel×480pixel图像,处理时间仅需50ms,每千个光斑的平均检测时间为23ms,在复杂环境下正确率可达89%。此外,该方法对弱光斑较敏感,适合快速处理含有大量不同尺度光斑的图像,并能够有效减少光斑的错检和漏检。由于检测速度快,自适应性强,在实际应用中取得了良好的检测效果。  相似文献   

3.
基于非极大值抑制的圆目标亚像素中心定位   总被引:5,自引:0,他引:5  
圆形目标在基于图像的测量系统中应用广泛,针对圆目标中心的高定位精度和快速提取的要求,提出了一种基于非极大值抑制的亚像素中心定位方法.该方法利用Sobel算子进行边缘检测,通过改进非极大值抑制方法获取连续细化的边缘,实现了像素级边缘定位,采用Zernike正交矩对边缘点进行亚像素级定位,并用最小二乘法进行二次拟合来获取精确的标志点的中心坐标.仿真图像和实测图像的实验结果验证了该方法的有效性和准确性,其定位精度可以达到0.02像素,通过测试算法的运行时间,证明该算法具有很好的实时性.  相似文献   

4.
大气激光通信光斑图像的快速复原与实时检测   总被引:2,自引:0,他引:2  
针对大气湍流对激光通信中对信标光的捕获、跟踪与对准(ATP)的影响,提出了基于盲解卷积的快速复原与实时检测算法。采用一维点扩散函数重新构造方位退化模型,取代了原有经典二维退化模型;改进了约束共轭梯度算法中的约束算子,并通过改进的共轭梯度迭代算法求得对原始图像的估计;最后通过连通域计算提取估计结果中的光斑中心位置。采用现场可编程门阵列和数字信号处理器实现所提出的共轭梯度算法并提取光斑中心位置,满足了系统实时性要求。实验表明,所提出的快速复原算法能够实时复原分辨率为200pixel×200piexl,帧频为100 Hz的光斑图像,所提取的信标光光斑中心位置与事后计算结果的误差小于1pixel,能够满足激光通信系统对信标光的实时跟踪要求。  相似文献   

5.
李道萍  杨波 《光学仪器》2018,40(4):20-25
光斑中心定位是光学测量中的关键技术之一,检测算法的精度和速度直接影响了测量的精度及速度,传统的检测算法如灰度质心法、Hough变换法等在检测精度或速度上存在不足。鉴于此,提出了一种高精度光斑中心定位算法,该算法不仅能定位光斑中心还能拟合出圆半径。用计算机生成的光斑和实验生成的光斑对该算法进行验证,并与其他传统算法进行比较,结果表明,该算法的误差小于0.5像素且比其他经典算法更精确。  相似文献   

6.
目前,对管道内腔为自由曲面的截面轮廓进行高精度测量是行业难题。拟将多个不同测量范围的激光位移传感器放置于管道内腔中,采用旋转的方式对内腔进行测量,将得到的测量数据进行归一化处理后获得被测管道内腔截面轮廓形状。分析测量过程中激光光斑的变化情况,针对光斑图像的多峰、散斑、平顶与形状变化等现象,提出了一种基于传统灰度重心法进行粗定位的距离倒数加权多项式插值亚像素光斑中心定位方法。采用中值滤波对光斑图像进行预处理,通过自适应阈值分割法从环境背景光强中分离出光斑中心定位区域。通过MATLAB仿真与灰度重心法、加权灰度重心法与高斯拟合法传统光斑中心定位方法相比,结果表明,光斑中心定位精度达到0.01 pixel,在激光光斑中心定位精度和稳定性方面有一定的改善,明显优于传统的光斑中心定位算法。  相似文献   

7.
朱帅飞  马伟  杨芳 《机械设计与制造》2021,366(8):235-239,245
针对目前运动靶标中心定位检测精度低、实时性差的难题,提出一种改进Zernike矩的亚像素边缘定位算法.该算法将Zernike算法和迭代法相结合,首先采用传统的Zernike算法计算图像的阶跃灰度矩阵,在阶跃灰度矩阵的基础上采用迭代法计算得到最佳灰度阶跃阈值作为边缘判据;最后从矩模板和灰度边缘模型两个角度对误差进行了分析和补偿.以靶标中心定位为实验研究对象,采用改进Zernike矩算法对靶标进行亚像素边缘定位,然后利用最小二乘法拟合圆心坐标,最后通过坐标变换得到靶标的空间位置,测试结果表明:该算法能够准确对运动靶标中心进行定位,算法的检测精度优于传统算法,同时最佳阈值的自动选取相比于人工手动调试具有更高的效率.  相似文献   

8.
针对现有边界提取方法用于复杂工业环境的不足,提出了一种应用像素邻接特性分析的光斑边缘图像修复方法.首先,通过对边缘图像的距离变换和连通分量标记得到一张标号图像,该图像把与最近边缘距离低于某一数值的背景像素标注为边缘候选点,其他背景像素标注为独立的连通区域.然后,依据真实边缘的邻接特性对候选边缘候选点重标号,实现断裂边缘的连接.最后,从邻接特性的角度对噪声进行分类并去除,从而完成激光边缘图像的修复.实验结果表明:该方法能有效修复8 pixel的边缘缝隙并去除较大的噪声;引入的中心定位均方根(RMS)误差为0.05 pixel,峰值(PV)误差为0.086 pixel,稳定地保持在较低的水平;单次图像修复耗时小于130 ms,实时性较好;能用于工业在线中心定位检测.  相似文献   

9.
多尺度光点图像中心的高精度定位   总被引:1,自引:1,他引:0  
提出了一种可快速、高精度提取不规则光点图像中心的多尺度光点图像中心定位方法.首先,结合图像形态学处理和阈值分割确定光点图像区域,初步确定光点图像大小;然后,计算不同尺度空间下各光点图像区域的Hessain矩阵,由Hessain矩阵特征值确定的判决系数确定最佳尺度,并确定光点图像中心像素级坐标;最后,根据光点区域周边图像二阶泰勒展开式求解光点图像中心亚像素坐标.仿真和实物实验表明,本文算法抗噪声能力强、可实现不同大小光点图像中心的快速高精度定位.在实物试验中,该方法提取光点图像中心的精度优于0.1 pixel.目前,该方法已在多套视觉测量系统中得到应用.  相似文献   

10.
基于Zernike矩的管道弯曲度高精度检测   总被引:3,自引:0,他引:3  
郑毅 《仪器仪表学报》2006,27(5):523-526
介绍了管道弯曲度测量系统的工作原理,提出了一种基于Zernike矩的管道弯曲度高精度检测方法。利用LoG算子把激光光斑边缘定位到像素级精度,然后使用Zernike矩算子进一步细分,使光斑边缘定位达到亚像素级精度,通过拟合计算得到光斑中心坐标,从而得到弯曲度的大小和方向。同时还进行了常用光斑中心定位算法与Zernike矩算法的对比实验,并对实验结果进行了定量分析。实验结果表明,Zernike矩算法的定位精度和速度均达到满意的结果。  相似文献   

11.
提出了一种基于MATLAB的激光光斑图像处理仿真算法.在MATLAB环境下,首先对采集到的光斑图像进行平滑滤波、亮度调节、阈值分割和边缘检测等图像处理,确定出光斑区域并得到边缘点的位置信息,再根据最小二乘法进行圆拟合进而计算得到光斑中心点的坐标.仿真结果表明,该算法能够快速、准确地得到光斑中心位置点,且达到很高的测量精...  相似文献   

12.
在大场景且背景影响较大的测量环境下,目前常见的用于相机标定的角点提取算法无法准确获取棋盘靶标的角点,因此针对棋盘靶标图案,提出一种大场景下的棋盘靶标自动定位算法。该算法根据棋盘靶标的结构特征,首先由加权亮度矩和灰度梯度投影算法自动定位图像中可能的棋盘靶标区域,其次在棋盘子图像中利用Houtgh变换验证该棋盘靶标所在区域的有效性。实验结果表明,该算法能够在大场景中自动准确地定位出棋盘靶标区域,为后续进一步高精度角点定位奠定良好的基础。  相似文献   

13.
在轨道测量装置中,激光光斑中心检测算法的精度和速度直接影响轨道测量效果,传统的中心算法如灰度质心法、Hough变换等在检测精度或速度上存在不足。文中提出了一种基于高斯积分曲线拟合的光斑中心定位算法,在光斑降噪、特征增强的图像预处理基础上,插值拟合光斑灰度曲面,进行边缘计算、追踪及细化,得到光斑的像素级边缘点,计算其法向等距线及高斯积分拟合点,并通过贝塞尔曲面拟合其对应灰度值,再采用高斯积分曲线拟合得到亚像素级边缘点,对亚像素边缘点进行圆拟合方法最终确定光斑中心点。与灰度质心法、Hough变换椭圆中心法相比,此算法的拟合精度较高,抗干扰性好,达到了实验室环境下轨道测量的精度要求。  相似文献   

14.
使用形态Haar小波法检测目标感兴趣区域   总被引:1,自引:0,他引:1  
对图像进行面向自动目标识别(Auto Target Recognition,ATR)的压缩其关键是快速而准确地检测到目标感兴趣区域ROI(Region-of-interest),并将其与背景区域分别进行不同比特率的压缩.本文将形态Haar小波法与数学形态学方法相结合来实现目标ROI的检测,设计了新的目标ROI检测算子.对采集图像进行二维形态Haar小波分解,结合目标ROI检测要求的特点,仅在尺度信号域内应用设计的目标ROI检测算子,最终完成目标ROI的检测.仿真实验表明,该方法对目标ROI的检测率最高可达到1.000 0,而最低虚警率仅为0.001 2;对含像素级别为102×102的图像,所需运算时间仅为10-1 s.与传统方法相比,本文算法对目标ROI检测效果好,运算简单,节省了运算时间和硬件资源.  相似文献   

15.
正交分光成像系统在高频动态坐标测量中具有独特优势。针对其在高频测量条件下数据量大,光斑坐标难以实时提取的问题,提出了一种基于现场可编程门阵列(FPGA)的实时多光斑峰值位置亚像素定位算法。首先设计与光斑光强分布相近的模板,通过模板匹配解决了原始图像中因噪声导致的峰值抖动问题;其次对匹配后的图像进行阈值比较并生成窗口信号,对窗内像素进行高斯拟合,拟合中心作为光斑峰值亚像素坐标。计算中充分利用FPGA并行处理的特点,采用流水线设计实现了硬件加速。实验表明,该算法可实现对多光斑位置的实时提取,光斑重复定位极差小于0.1像素,标准差为0.014像素,分辨力达亚像素级别。  相似文献   

16.
本文介绍了大型煤堆体积检测系统的特点,并给出了基于光学三角原理实现的煤场存煤量自动检测系统的构成和工作原理。分析了影响其测量准确度的主要因素,即转台的准确度、激光光斑的大小、激光散斑的存在及CCD接收器件的分辨率。针对大范围测量时,光斑图像占用多个像素及散斑造成的光斑图像强度分布不均以致于很难读取真正的光斑中心的问题,本文提出了基于Hough变换的光斑中心读取方法。实验表明,该方法有效地提高了大型煤堆体积检测系统的测量准确度  相似文献   

17.
针对钢轨磨耗动态测量中激光光条中心快速精确提取的问题,提出一种卡尔曼滤波和Hessian矩阵相结合的激光光条中心快速提取方法。首先,利用卡尔曼滤波实时预测钢轨磨耗动态测量中激光光条在图像中所在区域;然后,在预测的激光光条区域内,逐行搜索图像灰度最大点,将该灰度最大点作为激光光条图像中心的初始位置,在激光光条图像中心初始位置处利用Hessian矩阵计算得到光条中心的亚像素图像坐标;最终实现在激光光条区域内光条亚像素图像中心的快速提取。该方法显著减少了搜索区域及高斯卷积的数目,提高了激光光条中心提取的鲁棒性及速度。实验结果表明,在保证激光光条提取精度的前提下,每帧提取时间可达到1.6 ms。  相似文献   

18.
基于视觉的激光拼焊焊缝表面质量在线实时检测系统中,结构光条纹中心线能否快速、准确提取是影响检测系统性能的关键因素之一。传统的高斯拟合法和Hessian矩阵法虽然具有较高的亚像素提取精度,但其计算量非常大,无法满足实时性的要求。文中在分析激光拼焊焊缝质量检测系统中结构光条纹图像特点的基础上,将传统的几何中心法引入到结构光条纹中心线提取中,提出了一种精度介于像素级到亚像素级之间的局部阈值几何中心法。实验表明:该算法具有较高的精度和较强的抗干扰能力,实现了视觉检测系统中结构光条纹中心线的快速提取,为激光拼焊焊缝质量视觉检测系统在线实时检测奠定了基础。  相似文献   

19.
本文针对扶梯扶手边界区域越界检测提出了基于高斯混合建模的方法。该方法只对ROI(感兴趣区域)进行处理,主要通过输入的ROI四边形的四个顶点,根据本文提出的一种针对四边形的快速扫描线填充方法获取ROI四边形区域模板,然后,对ROI矩形区域图像用混合高斯模型检测运动前景,再计算ROI四边形模板内的运动前景面积占比,以及面积占比大于某一设定阈值的持续时间。最后,根据持续时间是否大于某一设定阈值来判断是否存在越界。实验证明该方法可以准确检测出扶梯扶手边界区域越界的人或物品。  相似文献   

20.
结合药品生产线瓶盖缝隙检测的具体需求,提出一种视觉成像采集系统的筛选与设计思路以及在此基础上的视觉图像处理方法。分析了视觉图像信息采集系统与具体生产线需求的关系,确定了图像采集系统的参数,设计了透射式照明与成像采集系统架构。在获取视觉图像后,提出使用区域标记算法、canny边缘检测算法、黑白二值化算法等,自动寻找瓶盖区域并确定瓶盖缝隙的像素宽度,最终给出实际物理宽度。测试实验表明,该系统测量的准确率为100%,最大误差值为0.016 mm,最大误差百分比为2.73%,平均误差百分比为1.15/%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号