首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
桑练勇  晏华  胡志德  代军  薛明 《中国塑料》2018,32(8):122-130
研究了聚碳酸亚丙酯(PPC)/聚乳酸(PLA)共混物在海水环境下的降解性能,通过力学实验、扫描电子显微镜、衰减全反射红外光谱等分别研究了共混物的力学性能、表面微观形貌、化学结构等的变化规律。结果表明,随着降解时间的延长,10/90、30/70、50/50、70/30(质量比,下同)的PPC/PLA共混物的拉伸强度都不断增大,而断裂伸长率在30 d时急剧降低,此后几乎保持不变;海水作用下240 d后PPC和PLA表面都存在明显孔洞和缺陷,而50/50的PPC/PLA共混物表面没有明显的裂纹和孔洞;纯PPC和纯PLA的羟基指数、羰基指数以及乳酸指数都呈现不断增大的趋势,且在前30 d比较明显,而50/50的PPC/PLA共混物则几乎没有变化;共混物的质量损失主要体现在前30 d,且质量损失率几乎都小于10 %,降解程度较低;共混物失重5 %的热分解温度提高,而最大速率失重温度几乎没有变化。  相似文献   

2.
采用熔融共混法将聚碳酸亚丙酯(PPC)与壳聚糖(CS)共混改性,研究了CS含量对PPC/CS共混物相容性、玻璃化转变温度(Tg)、热失重温度和拉伸性能的影响,并探讨了CS改性PPC的作用机理。结果表明:PPC与CS的共混属于简单物理共混,CS对PPC的Tg影响不大,但可显著提高PPC基体的耐热性能,扩大复合材料的加工温度范围。同纯PPC相比,PPC/CS共混物的TGA曲线向高温区偏移,共混物的5%分解温度(T-5%)较PPC提高了5159℃,其50%分解温度(T-50%)提高了1259℃,其50%分解温度(T-50%)提高了1221℃;另外,共混物的TGA曲线只存在一个高温区的失重台阶,这是由于CS的引入抑制了PPC在低温区的解拉链式降解,因而只有高温区的无规降解发生。此外,随着CS含量的增加,PPC/CS共混物的拉伸强度不断增大,当CS含量增至20%时,材料的拉伸强度由纯PPC的4.7 MPa上升至12.5 MPa。  相似文献   

3.
采用熔融接枝技术将马来酸酐(MAH)接枝到聚乳酸(PLA)上,制备不同MAH含量的PLA-g-MAH接枝共聚物,将聚碳酸亚丙酯(PPC)、PLA、PLA-g-MAH熔融共混,制备PPC/PLA/PLA-g-MAH共混物,分析接枝物中MAH含量对PPC/PLA/PLA-g-MAH共混体系的热学性能以及力学性能的影响。结果表明:PLA-g-MAH可以改善PPC与PLA二者的相容性,使PLA在降温过程中更容易结晶。引入接枝物后,共混物的起始分解温度及完全分解温度分别提高30℃和60℃。共混物的力学性能随着接枝物中MAH含量的增加呈现先增加后减小的趋势,当MAH的加入量为3%,共混体系力学性能最佳,冲击断面塑性形变程度更加显著,呈现褶皱状韧性断裂特征,拉伸强度达到42.8 MPa,断裂伸长率为120%左右,同时冲击强度最大。  相似文献   

4.
可降解聚碳酸亚丙酯复合材料的性能   总被引:1,自引:0,他引:1  
通过聚碳酸亚丙酯(PPC)与聚乳酸(PLA)的共混,提高PPC的热性能、力学性能、生物降解性。利用扫描电子显微镜(SEM)、多晶X衍射(XRD)、差示扫描量热(DSC)、热重分析(TG)、拉伸力学实验研究了复合材料的性能。实验结果表明,聚合物之间没有发生化学反应,共混物为部分相容的体系;复合材料的玻璃化转变温度最高比PPC提高30℃,分解温度Td5%最多比PPC提高42℃,Td50%最多比PPC提高67℃;PLA的加入使复合材料的降解性能优于PPC,40d降解后复合材料最大失重率为33.37%,是PPC的9倍;PPC-PLA复合材料有良好的成膜性,制备的薄膜透明均匀,复合薄膜材料拉伸强度为36~58MPa,杨氏模量最大为2943MPa。  相似文献   

5.
以微晶纤维素(MCC)作为改性剂,马来酸酐接枝聚乳酸(PLA g MAH)为界面相容剂,聚乳酸(PLA)、聚碳酸亚丙酯(PPC)为基体,通过熔融共混法制得PLA/PPC/MCC三元复合材料。采用控温拉伸、动态热分析、扫描电子显微镜以及热失重分析等方法研究了MCC对PLA/PPC的力学性能和热稳定性。结果表明,PLA/PPC/MCC三元复合材料的拉伸强度提高了12.7 %,玻璃化转变温度(Tg)提高了9.8 ℃;PLA g MAH的加入可以改善PLA/PPC/MCC三元复合材料的界面性质,从而提高力学性能和热稳定性;当PLA g MAH的添加量为5 %(质量分数,下同)时,三元复合材料在常温下的拉伸强度、弯曲强度和冲击强度分别提高了53.7 %、43.1 %和18.5 %;在60 ℃下三元复合材料的断裂强度提高了80 %;热降解温度以及最大失重温度与PLA/PPC相比分别提高了25.31 ℃和61.83 ℃。  相似文献   

6.
完全生物降解塑料PLA/PPC合金的结构与性能研究   总被引:6,自引:0,他引:6  
富露祥  谭敬琢  秦航  李立 《塑料工业》2006,34(11):14-16
利用机械共混法,将聚乳酸(PLA)与聚丙撑碳酸亚丙酯(PPC)熔融共混,制备了完全生物降解塑料PLA/PPC合金,并用FTIR、流变仪等手段研究了其结构、力学性能和流变性能。结果表明该共混体系具有良好的相容性、力学性能和熔体流动性,PLA与PPC之间存在着较强的相互作用,PPC的加入使体系拉伸强度下降幅度不大,断裂伸长率升高到23.8%,比纯PLA提高近20倍。共混体系的黏度亦随着PPC的加入逐渐增大,PLA/PPC(50/50)体系的黏流活化能为37.1kJ/mol,同时在一定的温度范围内,提高切应力也会使体系黏度下降。  相似文献   

7.
研究了聚碳酸亚丙酯(PPC)/聚乳酸(PLA)共混物在光照条件下的降解性能,通过力学实验、质量变化、扫描电子显微镜(SEM)、衰减全反射红外光谱技术(ATR-FTIR)、高温凝胶渗透色谱(GPC)和热重分析(TG)分别研究了共混物力学性能、质量损失、表面微观形貌、化学结构、相对分子质量和热稳定性的变化规律。结果表明,100/0、70/30、50/50、30/70、0/100(质量比,下同)的PPC/PLA共混物光照56d时质量损失率为34.89%、40.50%、39.38%、29.6%和6.24%,共混物在14d时几乎损失所有的力学性能;光照56d后PPC和50/50的PPC/PLA共混物表面有明显的裂纹和孔洞,而PLA表面没有变化,光照时间越长,共混物表面越粗糙,降解程度越大;共混物的羟基指数(HI)和羰基指数(CI)在前21d不断增大,其中前14d比较明显;共混物在光照56d后相对分子质量降低,多分散性指数减小,分子量分布变窄;共混物失重5%的热分解温度(T-5%)和最大速率失重温度(TP)提高,而PPC的TP却降低。  相似文献   

8.
采用熔融共混法制备了马来酸酐(MA)封端聚碳酸亚丙酯(PPC)和聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG)的共混物(PPC-MA/PETG),采用套管上吹法将共混物吹塑成膜.通过差示扫描量热仪(DSC)、热失重分析(TGA)及扫描电子显微镜(SEM)等手段系统地研究了共混物的热、力学性能及形貌.结果表明:PPC-MA/PETG共混物为部分相容体系;MA封端PPC可以提高PPC的热分解温度(T-5%),PETG与PPC-MA共混进一步提高了PPC的热性能;当PETG含量低时,PETG作为岛相分散在PPC基体中,随着含量的增加,共混物将发生"海-岛"结构转变成"海-海"结构;共混物薄膜的力学性能较纯PPC大幅增强,从4.7MPa提高到16.93MPa.PPC-MA与PETG共混可以获得力学性能较好的膜材料,改善PPC材料的缺陷,在包装、生物医用材料等领域具有广阔的应用前景.  相似文献   

9.
在聚苯乙烯(PS)的黏流温度以下制备了聚丙撑碳酸酯(PPC)和PS的共混物,研究了配比对PPC/PS共混物的热降解、形貌、力学性能和水蒸气阻隔性的影响。结果表明,共混物的黏度随PS含量增加而增大。PS促进了PPC的热降解。PS质量分数为50%~70%时,共混物为共连续结构。其他配比下,共混物呈海岛分相,分散相呈片层状。随PS含量的提高,共混物的弹性模量、拉伸强度和洛氏硬度提高,断裂伸长率降低。38℃下,共混物的水蒸气渗透率随PS含量的增加而降低,而在20℃下,变化趋势相反。当PS质量分数为50%时,共混物的水蒸气渗透率在20~38℃内不随温度改变。  相似文献   

10.
通过熔融共混方法制备聚乳酸(PLA)/热塑性淀粉(TPS)共混材料。研究了TPS用量对PLA/TPS共混材料力学性能、降解性能、热性能和微观形貌等的影响。结果表明,加入TPS在一定程度上能改善PLA韧性不足的问题,PLA/TPS共混材料的降解性能优于纯PLA。当TPS质量分数为10%时,TPS与PLA的相容性较好,PLA/TPS共混材料的综合性能最好,其中,断裂伸长率为37.4%,比纯PLA提高695.7%;冲击强度为5.5 kJ/m2,比纯PLA提高34.1%;熔体流动速率为18.0 g/(10 min),比纯PLA提高4.7%;在60 d的降解率为9.28%,远大于纯PLA的1.30%;失重5%时的温度为172℃,比纯PLA降低161℃;450℃时的质量保持率为11.28%,比纯PLA提高11.06%。  相似文献   

11.
采用双螺杆挤出机将甲基丙烯酸缩水甘油酯(GMA)接枝到聚乳酸(PLA)上,而后将接枝产物(PLA-g-GMA)与聚乳酸(PLA)、聚碳酸亚丙酯(PPC)反应性共混,考察了接枝物中GMA加入量变化对PLA/PPC/PLA-g-GMA共混体系的力学性能、热稳定性能的影响,并对共混体系的断裂机理进行了研究。结果表明,PLA-g-GMA的引入能够在一定程度上改善PLA与PPC的相容性。随着接枝物中GMA加入量的增加,共混物的冲击强度、断裂伸长率及拉伸强度均呈现出先升高后降低的趋势,并在接枝物中GMA加入量为3%时达到最大值。扫描电镜结果显示,PLA-g-GMA引入后共混物的韧性断裂特征越发显著,其冲击断裂方式由脆性断裂过渡为韧性断裂。热失重分析结果显示,加入PLA-g-GMA后共混物的起始分解温度和完全分解温度均有一定程度的提高。  相似文献   

12.
采用双螺杆挤出机制备了聚乳酸(PLA)/聚碳酸亚丙酯(PPC)共混物和PLA/PPC/有机改性蒙脱土(OMMT)纳米复合材料,采用偏光显微镜、差示扫描量热仪和力学性能试验机等对共混物和纳米复合材料的相态结构、熔融与结晶行为和力学性能等进行了研究。结果表明,在PPC含量低于30 %时,随着PPC含量的增加,PLA/PPC和PLA/PPC/OMMT体系中PLA的玻璃化转变温度(Tg)均降低,在PPC含量为50 %时出现了明显的相分离;随着PPC含量的增加,PLA/PPC的冲击强度增大;OMMT的含量小于1.5 %时,PLA/PPC/OMMT体系的结晶度、拉伸强度、断裂伸长率和冲击强度均随OMMT含量的增加而增大。  相似文献   

13.
以乙二胺和三聚氯氰作为原料,以丙酮为溶剂,通过“一步法”合成了胺端基型的超支化乙二胺三嗪聚合物(HBETP)。以HBETP作为改性剂,采用双螺杆挤出机熔融共混和注射成型法制备了聚乳酸(PLA)/聚碳酸亚丙酯(PPC)共混物,并用差示扫描量热仪(DSC)、 热失重分析仪(TGA)、电子万能试验机、扫描电字显微镜(SEM)等测试手段对共混物的热性能、力学性能以及断面形貌等进行表征与测试。结果表明,与PLA/PPC共混物相比,当HBETP含量为0.6份时,PLA/PPC/HBETP共混体系在保持拉伸强度基本不变的基础上,断裂伸长率和冲击强度分别提高了266.0 %和122.9 %;HBETP是一种增韧PLA/PPC共混物的有效助剂。  相似文献   

14.
采用熔融共混法制备了PBS/PPC/MPEG(WMPEG=0%,5%,10%,15%,20%)共混物,利用单边缺口弯曲试验(SENB)研究了MPEG用量对其断裂的临界能量释放率Gin的影响;以热重分析法(TG)研究了PBS/PPC及PBS/PPC/MPEG在氮气气氛中的热降解过程,并采用Kissinger法研究了共混物的热降解动力学和表观活化能(E)。结果表明:当MPEG含量为5%时,共混物临界能量释放率Gin达到最大值1.47 kJ/m2;共混物出现两个热失重峰,热降解活化能为125.5 kJ/mol,增容剂MPEG的引入,使共混物的活化能提高了到160.1 kJ/mol。  相似文献   

15.
将乙烯/甲基丙烯酸丁酯/甲基丙烯酸缩水甘油酯三元共聚物(GEBMA)和滑石粉(Talc)按不同比例加入聚乳酸(PLA)基体中,熔融共混制备PLA/GEBMA/Talc共混物。将GEBMA的质量分数固定为10%,探讨了不同含量的Talc对PLA/GEBMA/Talc共混物的力学性能、流变性能、热性能、相形态以及耐热性能的影响。结果表明:GEBMA的加入提高了PLA的韧性,冲击强度从纯PLA的4.3 kJ/m~2提高到PLA/GEBMA(90/10)的21.6 kJ/m~2。随着Talc含量的增加,PLA/GEBMA/Talc共混物的拉伸强度和冲击强度降低,弹性模量增加,PLA/GEBMA/Talc材料具有良好的力学性能。Talc起到了异相成核作用,可以提高结晶速率,减小PLA的晶体尺寸,改善了共混物的耐热性能。PLA/GEBMA/Talc材料可广泛用于可生物降解的注塑产品。  相似文献   

16.
PPC/PBAT生物降解材料热性能和力学性能的研究   总被引:2,自引:0,他引:2  
采用聚对苯二甲酸丁二醇酯-己二酸丁二醇酯(PBAT)对聚甲基乙撑碳酸酯(PPC)进行共混改性,对共混物进行了性能分析,并对PPC纯料与纤维素进行受控堆肥条件下最终需氧生物分解和崩解能力测试。结果表明:相同时间内PPC的生物分解速率要低于纤维素的生物分解速率;120 d内纤维素最大生物分解率为90%,PPC最大生物分解率约为63%;当PBAT的加入量为20%时,PPC的玻璃化转变温度提高3.55℃,失重率5%、50%和90%时的温度分别最高提高3.61℃、42.73℃和70.21℃;当PBAT含量为40%时,共混片材的拉伸强度最高提高了236.4%。  相似文献   

17.
通过聚碳酸亚丙酯(PPC)与聚乙二醇(PEG)的共混,提高PPC的热性能、亲水性和降解性能。通过1HNMR、FT-IR、XRD研究了共混物的相容性,表明聚合物之间没有发生化学反应,两者之间为简单的物理共混,相容性较好。共混物热性能的测试结果表明,共混物的玻璃化转变温度最高为61℃,比PPC提高了39℃,Td50%和最高分解速率时的温度都在242~262℃范围内,高于PPC的Td50%(235℃)和Tmax(238℃);共混物亲水性是PPC的12~33倍,其溶液降解性最多比PPC提高16倍,而生物降解性能至少比PPC提高4~6倍。  相似文献   

18.
《塑料》2016,(6)
采用熔融共混的方法制备了聚甲醛(POM)/聚碳酸亚丙酯(PPC)合金材料,研究了该复合材料的熔融、结晶及力学性能。结果显示,相对纯POM而言,合金中POM的结晶与熔融温度以及相应的焓值均下降,结晶速率降低,结晶活化能升高;当PPC的含量达到90%时,合金中POM的结晶度从77.8%下降到了68.1%,下降了9.7%。另外,相对POM而言,PPC与POM的合金化极大的提高了POM的断裂伸长率,当合金中PPC的含量达到50%时,POM的断裂伸长率从68%升高到569%,提高了8.4倍。相对PPC而言,PPC与POM合金化改善了单一PPC的力学性能,合金中添加50%的POM质量份数使PPC的断裂伸长率从453%增大到569%,比纯PPC增大了116%,同时使PPC的弯曲性能和韧性得到了提高。  相似文献   

19.
聚乳酸/聚己内酯共混材料的性能研究   总被引:2,自引:0,他引:2  
采用熔融共混的方法制备了聚乳酸(PLA)/聚己内酯(PCL)共混材料,研究了PLA/PCL共混材料的动态力学性能、力学性能、热性能和微观形貌。结果表明,制备的PLA/PCL共混材料为部分相容体系;材料拉伸强度随PCL含量的增加先增加后降低,当PCL质量分数为30%时,材料的拉伸强度为55.9 MPa,比纯PLA提高了8%;冲击强度随PCL含量的增加而增大,当PCL质量分数为50%时,材料的冲击强度为14.7 kJ/m2,比纯PLA提高了2.5倍。  相似文献   

20.
利用马来酸酐(MAH)作为聚碳酸亚丙酯(PPC)的封端剂,采用熔融共混法制备了PPC /有机水滑石(OLDH)复合材料。当复合材料中OLDH的含量达到4 %(质量分数,下同)时,复合材料的5 %失重温度、 95 %失重温度、失重最大速率温度较纯PPC分别提高了49.1、70.2、49.3 ℃,玻璃化转变温度由18.3 ℃增加到了22.7 ℃,并且少量层状粒子OLDH的加入可以提高聚合物的力学性能以及阻隔性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号