首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
通过聚碳酸亚丙酯(PPC)与聚乙二醇(PEG)的共混,提高PPC的热性能、亲水性和降解性能。通过1HNMR、FT-IR、XRD研究了共混物的相容性,表明聚合物之间没有发生化学反应,两者之间为简单的物理共混,相容性较好。共混物热性能的测试结果表明,共混物的玻璃化转变温度最高为61℃,比PPC提高了39℃,Td50%和最高分解速率时的温度都在242~262℃范围内,高于PPC的Td50%(235℃)和Tmax(238℃);共混物亲水性是PPC的12~33倍,其溶液降解性最多比PPC提高16倍,而生物降解性能至少比PPC提高4~6倍。  相似文献   

2.
以微晶纤维素(MCC)作为改性剂,马来酸酐接枝聚乳酸(PLA g MAH)为界面相容剂,聚乳酸(PLA)、聚碳酸亚丙酯(PPC)为基体,通过熔融共混法制得PLA/PPC/MCC三元复合材料。采用控温拉伸、动态热分析、扫描电子显微镜以及热失重分析等方法研究了MCC对PLA/PPC的力学性能和热稳定性。结果表明,PLA/PPC/MCC三元复合材料的拉伸强度提高了12.7 %,玻璃化转变温度(Tg)提高了9.8 ℃;PLA g MAH的加入可以改善PLA/PPC/MCC三元复合材料的界面性质,从而提高力学性能和热稳定性;当PLA g MAH的添加量为5 %(质量分数,下同)时,三元复合材料在常温下的拉伸强度、弯曲强度和冲击强度分别提高了53.7 %、43.1 %和18.5 %;在60 ℃下三元复合材料的断裂强度提高了80 %;热降解温度以及最大失重温度与PLA/PPC相比分别提高了25.31 ℃和61.83 ℃。  相似文献   

3.
采用溶液浇铸法制备了聚碳酸亚丙酯(PPC)/聚乳酸(PLA)共混物,通过力学性能测试、衰减全反射红外光谱分析、差示扫描量热分析和热失重分析研究了共混物的性能,并对共混物进行了热分解动力学研究。结果表明,随着PLA含量的增加,共混物的拉伸强度增大,断裂伸长率减小,PPC/PLA共混物的力学性能得到改善;随着PLA的含量从10%(质量分数,下同)增加到90%,共混物热失重10%所对应的温度(T-10%)从255℃逐渐增加到281℃,当PLA的含量分别为10%、50%和90%时,最大速率失重温度比纯PPC分别提高了3.45、15.51和41.58℃;采用Coats-Redfern法得出,PLA的加入能提高PPC的活化能,其中PLA含量为30%和50%时,共混物的活化能比纯PPC分别提高了12.72%和40.68%,说明PLA改善了PPC的热稳定性。  相似文献   

4.
采用熔融共混法将聚碳酸亚丙酯(PPC)与壳聚糖(CS)共混改性,研究了CS含量对PPC/CS共混物相容性、玻璃化转变温度(Tg)、热失重温度和拉伸性能的影响,并探讨了CS改性PPC的作用机理。结果表明:PPC与CS的共混属于简单物理共混,CS对PPC的Tg影响不大,但可显著提高PPC基体的耐热性能,扩大复合材料的加工温度范围。同纯PPC相比,PPC/CS共混物的TGA曲线向高温区偏移,共混物的5%分解温度(T-5%)较PPC提高了5159℃,其50%分解温度(T-50%)提高了1259℃,其50%分解温度(T-50%)提高了1221℃;另外,共混物的TGA曲线只存在一个高温区的失重台阶,这是由于CS的引入抑制了PPC在低温区的解拉链式降解,因而只有高温区的无规降解发生。此外,随着CS含量的增加,PPC/CS共混物的拉伸强度不断增大,当CS含量增至20%时,材料的拉伸强度由纯PPC的4.7 MPa上升至12.5 MPa。  相似文献   

5.
聚碳酸亚丙酯改性复合材料的性能   总被引:4,自引:0,他引:4  
通过溶液共混法实现聚碳酸亚丙酯(PPC)与聚乙二醇(PEG)的共混改性,提高PPC的热性能。通过1HNMR、FTIR研究了共混物的相容性,表明聚合物之间没有发生化学反应,两者之间为简单的物理共混,相容性较好,而且共混物的亲水性随着PEG组分的增加而增强。热性能测试结果表明,共混物的玻璃化转变温度(Tg)和热分解温度(Td)都比PPC高,Tg和Td95%最高分别达到51℃和410℃,比PPC提高了29℃和130℃。可用于制备高性能的包装材料。  相似文献   

6.
《塑料科技》2013,(12):31-33
通过转矩流变仪制备了聚碳酸亚丙酯/聚甲基丙烯酸甲酯(PPC/PMMA)复合材料,利用红外光谱(FTIR)、差示扫描量热(DSC)、热重分析(TG)研究了复合材料的性能。结果表明:140℃下添加PMMA,抑制了PPC"解拉链"降解;复合材料的玻璃化转变温度和热分解速率最大温度随着共混物中PMMA加入量的增加而逐渐提高,分别达到38.40℃和268.10℃,比纯PPC提高了25.01℃和54.4℃。  相似文献   

7.
采用马来酸酐(MAH)作为封端剂与聚碳酸亚丙酯(PPC)进行接枝反应,制备了MAH改性聚碳酸亚丙酯(M-PPC)。将M-PPC用于聚碳酸亚丙酯/聚乳酸(PPC/PLA)复合材料中,考察了MAH对PPC/PLA复合材料的力学性能、形状记忆性能和热稳定性的影响。扫描电镜(SEM)观察到M-PPC对复合材料界面影响显著,力学性能测试结果显示M-PPC对复合材料的拉伸强度和弯曲强度均有提升作用,当M-PPC含量为3%时,材料力学性能达到最佳。热重分析表明,M-PPC使PPC/PLA复合材料的初始热降解温度提高了28℃。M-PPC使PPC/PLA复合材料的热刺激相应形状回复率Rr达到93.62%,固定率Rf达到99%以上,分别比纯PPC/PLA的提高了33.58%,2.5%。  相似文献   

8.
毛晨曦 《山东化工》2013,(11):12-14
通过转矩流变仪制备了PPC/纳米氧化锌复合材料,利用红外光谱(FTIR)、差示扫描量热(DSC)、热重分析(TG)研究了复合材料的性能。实验结果表明添加纳米氧化锌,抑制了PPC“解拉链”降解;复合材料的玻璃化转变温度和热分解速率最大温度随着共混物中纳米氧化锌加入量的增加而逐渐提高,分别达到31.15℃和263.10℃,比纯PPC提高了17.66℃和49.4℃。  相似文献   

9.
本实验采用熔融共混的方式制备了聚碳酸亚丙酯(PPC)/聚氨酯弹性体(TPU)复合材料。通过红外光谱分析(FT-IR)、微机控制电子万能试验机、悬臂梁冲击试验机、差示量热扫描分析仪(DSC)、热重分析仪(TG)、扫描电子显微镜(SEM)、熔体质量流动速率仪、转矩流变仪对共混物的微观形态、相容性、热稳定性、力学性能等进行了研究。结果表明:共混体系中材料的相容性较好,聚氨酯弹性体的引入提高了复合材料的热稳定性和力学性能,当聚氨酯弹性体的质量分数为40%时,共混物的拉伸强度达到23.5 MPa,提高了约13 MPa;5%分解温度Tb5为353.3℃,较PPC提高了104.6℃。  相似文献   

10.
将与聚乳酸(PLA)化学接枝改性的环氧大豆油(ECP)和乙酰柠檬酸三丁酯(ATBC)作为复合增塑剂,改变ECP和ATBC的含量与PLA熔融共混制备PLA/ECP/ATBC三元共混复合材料,通过差式扫描量热仪、热变形温度测定仪、万能拉伸试验机、水接触角测定仪、洛氏硬度计考察了PLA/ECP/ATBC复合材料的热稳定性、力学性能和亲疏水性能。结果表明,复合材料结晶度最大为14.07%,是纯PLA的8.96倍;缺口冲击强度最大为4.59 kJ/m~2,比纯PLA提高了99.57%;断裂伸长率最大为167.2%,是纯PLA的50.21倍;改变ECP和ATBC的含量可以调节PLA复合材料的亲疏水能力和雾度,能为PLA基体与其他亲水亲油类材料的相容性改性拓宽思路,雾度的改变使PLA基复合材料可以用作光扩散剂,有助于拓展PLA材料的应用范围。  相似文献   

11.
以含硅多芳炔化合物(PSA)与1,3,5-三叠氮甲基-2,4,6-三甲基苯(TAMTMB)为原料,通过1,3-偶极环加成反应制备了新型含硅聚三唑树脂Si-PTA3,考察了树脂的流变性能、固化行为、热性能及单体配比对其热性能的影响。采用模压法制备了单向T700碳纤维增强的Si-PTA3树脂复合材料T700/Si-PTA3,测定了其力学性能。结果表明,Si-PTA3树脂具有良好的加工性能,可在80℃下固化,耐热性较好;炔基与叠氮基摩尔比为1.1:1.0时树脂固化物的热性能最好,玻璃化转变温度达334℃,在氮气中热失重5%时的温度达351℃;复合材料T700/Si-PTA3常温下的弯曲强度高于1670 MPa,250℃时弯曲强度保留率超过67%。  相似文献   

12.
分别以无水醋酸锌(ZA)和酒石酸(TA)作为热塑性淀粉(TPS)的改性剂,通过熔融共混法制备了改性TPS及聚甲基乙撑碳酸酯(PPC)/改性TPS复合材料,并采用旋转流变仪、傅里叶变换红外光谱仪、扫描电子显微镜、热重分析仪、差示扫描量热仪等分析表征了改性TPS对复合材料流变行为、微观形貌和力学性能的影响。结果表明,与ZA相比,TA更能促进TPS在PPC基体相中分散,较低含量TA改性TPS(TPS-TA)的加入使复合材料的力学性能提高;添加10 %(质量分数,下同)TPS-TA的复合材料综合性能最佳,其拉伸强度比纯PPC提高了2.41 MPa、5 %质量损失温度(T5 %)提高了31.7 ℃ 。  相似文献   

13.
采用含类基体基团的乙烯基三甲氧基硅烷修饰氧化石墨烯(GO),再用"一锅法"将其还原得到功能化石墨烯(F-GE),通过溶剂浇注法制备出界面性能优良的聚偏氟乙烯导热复合材料(PVDF/F-GE).利用红外光谱仪(FTIR)、扫描电子显微镜(SEM)、热导率测试仪、电子拉力试验机对复合材料的改性状态、微观形貌、导热性能和力学...  相似文献   

14.
柳黎  李婷  汪洋  东为富 《塑料》2020,49(1):1-5,10
将过氧化二异丙苯(DCP)置于特定温度下,引发邻苯二甲酸二烯丙酯(DAP)在聚碳酸亚丙酯(PPC)溶液中聚合,制备得到聚碳酸亚丙酯/聚邻苯二甲酸二烯丙酯(PPC/PDAP)共混膜。采用红外光谱仪(FTIR)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)、热重分析仪(TGA)、万能试验机和水蒸气透过率测试仪对共混膜的红外吸收、结晶性、热、力学和阻隔性能进行了表征。结果表明,通过DAP的聚合,提高了PPC的结晶性,使PDAP在PPC基体中形成交联网络,提高了共混膜的热、力学和阻隔性能。相比纯PPC,当DAP含量为20%时,共混膜的玻璃化转变温度和拉伸强度分别提高了5.3℃和266%;当DAP含量为40%时,共混膜的失重5%热分解温度提高了50.9℃,透湿系数下降了25%,因此,阻隔性能得到了提升。  相似文献   

15.
研究了纳米二氧化硅(SiO2)的含量对双马来酰亚胺(BMI)/环氧树脂(EP)/2,2′二烯丙基双酚A(DBA)/纳米SiO2复合材料的耐热性能、力学性能和吸水性能的影响。结果表明,当纳米SiO2的含量为2.0 %(质量分数,下同)时,BMI/EP/DBA/纳米SiO2复合材料具有较高的强度和良好的韧性,其拉伸强度、弯曲强度和缺口冲击强度比BMI/EP/DBA复合材料分别提高了22.8 %、39.0 %和37.8 %;同时,纳米SiO2含量为 2.0 %时,BMI/EP/DBA/纳米SiO2复合材料具有优异的耐热性,其玻璃化转变温度、初始热分解温度和最大热分解温度分别为204、 410、451 ℃。  相似文献   

16.
含苯炔基侧链的聚酰亚胺树脂及其复合材料   总被引:2,自引:1,他引:1  
采用联苯酐(3,4′-BPDA)与4,4′-二氨基二苯醚(4,4-ODA),3,5-二氨基-4′-苯炔基二苯甲酮(DPEB),苯炔基苯酐(PEPA)制备了不同分子质量的聚酰亚胺树脂。通过流变分析,热重分析,红外光谱,动态热力学分析及静态力学性能测试等研究了分子结构,分子质量等因素对聚酰亚胺树脂耐热性和力学性能的影响。结果表明,合成的聚酰亚胺树脂具有优异耐热性能和较高的韧性,固化后树脂的玻璃化转变温度为379℃,5%热失重温度高于550℃,并且浇注体的拉伸强度是61 MPa,断裂伸长率是6.2%.碳纤维复合材料的室温弯曲强度为1 850 MPa,层间剪切强度为84 MPa,316℃时弯曲强度为946 MPa,剪切强度为46 MPa,具有良好的高温力学保持率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号