首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
One challenge of the implementation of fully-integrated RF power amplifiers into a deep submicro digital CMOS process is that no capacitor is available,especially no high density capacitor.To address this problem,a two-stage class-AB power amplifier with inter-stage matching realized by an inter-metal coupling capacitor is designed in a 180-nm digital CMOS process.This paper compares three structures of inter-metal coupling capacitors with metal-insulator-metal(MIM) capacitor regarding their capacitor density.Detailed simulations are carried out for the leakage,the voltage dependency,the temperature dependency,and the quality factor between an inter-metal shuffled(IMS) capacitor and an MIM capacitor.Finally,an IMS capacitor is chosen to perform the inter-stage matching.The techniques are validated via the design and implement of a two-stage class-AB RF power amplifier for an UHF RFID application.The PA occupies 370 × 200 μm^2 without pads in the 180-nm digital CMOS process and outputs 21.1 dBm with 40% drain efficiency and 28.1 dB power gain at 915 MHz from a single 3.3 V power supply.  相似文献   

2.
A 2.4-GHz SiGe HBT power amplifier (PA) with a novel bias current controlling circuit has been realized in IBM 0.35-μm SiGe BiCMOS technology, BiCMOS5PAe. The bias circuit switches the quiescent current to make the PA operate in a high or low power mode. Under a single supply voltage of +3.5 V, the two-stage mode-switchable power amplifier provides a PAE improvement up to 56.7% and 19.2% at an output power of 0 and 20 dBm, respec- tively, with a reduced quiescent current in the low power mode as compared to only operating the PA in the high power mode. The die size is only 1.32×1.37mm^2.  相似文献   

3.
A new on-chip temperature compensation circuit for a GaAs-based HBT RF amplifier applied to wireless communication is presented.The simple compensation circuit is composed of one GaAs HBT and five resistors with various values,which allow the power amplifier to achieve better thermal characteristics with a little degradation in performance.It effectively compensates for the temperature variation of the gain and the output power of the power amplifier by regulating the base quiescent bias current.The temp...  相似文献   

4.
An Envelope Hammerstein Model for Power Amplifiers   总被引:1,自引:0,他引:1  
In this paper, an envelope Hammerstein (EH) model is introduced to describe dynamic input -output characteristics of RF power amplifiers. In the modeling approach, we use a new truncation method and an established nonlinear time series method to determine model structure. Then, we discuss the process of model parameter extraction in detailed. Finally, a 2 W WCDMA power amplifier is measured to verify the performance of EH model, and good agreement between model output and measurement result shows our model can accurately predict output characteristic of the power amplifier.  相似文献   

5.
To implement a fully-integrated on-chip CMOS power amplifier(PA) for RFID readers,the resonant frequency of each matching network is derived in detail.The highlight of the design is the adoption of a bonding wire as the output-stage inductor.Compared with the on-chip inductors in a CMOS process,the merit of the bondwire inductor is its high quality factor,leading to a higher output power and efficiency.The disadvantage of the bondwire inductor is that it is hard to control.A highly integrated class-E PA is implemented with 0.18-μm CMOS process.It can provide a maximum output power of 20 dBm and a 1 dB output power of 14.5 dBm.The maximum power-added efficiency(PAE) is 32.1%.Also,the spectral performance of the PA is analyzed for the specified RFID protocol.  相似文献   

6.
A transformer-based CMOS power amplifier(PA) is linearized using an analog predistortion technique for a 2.5-GHz m-WiMAX transmitter.The third harmonic of the power stage and driver stage can be cancelled out in a specific power region.The two-stage PA fabricated in a standard 0.18μm CMOS process delivers 27.5 dBm with 27%PAE at the 1-dB compression point(P1dB) and offers 21 dB gain.The PA achieves 5.5%EVM and meets the spectrum mask at 20.5 dBm average power.Another conventional PA with a zero-cross-point of gm3 bias is also fabricated and compared to prove its good linearity and efficiency.  相似文献   

7.
In CDMA systems, the Radio Frequency Power Amplifier (RF PA) is the most important device. As is known, the nonlinearity of the power amplifier always attracts people’s attention. Since the envelope of CDMA is time-varying, it is of great significance to calculate the distortion caused by the transmitter in the communication system of CDMA. The odd order nonlinear intermodulations of the transmitter expand the frequency spectrum of the CDMA signal, which is called spectral regrowth.…  相似文献   

8.
A novel matching method between the power amplifier (PA) and antenna of an active or semi-active RFID tag is presented. A PCB dipole antenna is used as the resonance inductor of a differential power amplifier. The total PA chip area is reduced greatly to only 240 × 70 μm2 in a 0.18 μm CMOS process due to saving two on-chip integrated inductors. Operating in class AB with a 1.8 V supply voltage and 2.45 GHz input signal, the PA shows a measured output power of 8 dBm at the 1 dB compression point.  相似文献   

9.
A novel matching method between the power amplifier(PA) and antenna of an active or semi-active RFID tag is presented.A PCB dipole antenna is used as the resonance inductor of a differential power amplifier. The total PA chip area is reduced greatly to only 240×70μm~2 in a 0.18μm CMOS process due to saving two on-chip integrated inductors.Operating in class AB with a 1.8 V supply voltage and 2.45 GHz input signal,the PA shows a measured output power of 8 dBm at the 1 dB compression point.  相似文献   

10.
A new on-chip temperature compensation circuit for a GaAs-based HBT RF amplifier applied to wireless communication is presented.The simple compensation circuit is composed of one GaAs HBT and five resistors with various values,which allow the power amplifier to achieve better thermal characteristics with a little degradation in performance.It effectively compensates for the temperature variation of the gain and the output power of the power amplifier by regulating the base quiescent bias current.The temperature compensation circuit is applied to a 3-stage integrated power amplifier for wireless communication applications,which results in an improvement in the gain variation from 4.0 to 1.1 dB in the temperature range between -20 and +80℃.  相似文献   

11.
A 4–9 GHz 10W wideband power amplifier   总被引:1,自引:1,他引:0  
A 4-9 GHz wideband high power amplifier is designed and fabricated, which has demonstrated saturated output power of 10 W covering 6-8 GHz band, and above 6 W over the other band. This PA module uses a balance configuration, and presents power gain of 7.3 + 0.9 dB over the whole 4-9 GHz band and 39% power-added efficiency (PAE) at 8 GHz. Both the input and output VSWR are also excellent, which are bellow -10 dB.  相似文献   

12.
吴拓  陈弘毅  钱大宏 《半导体学报》2009,30(5):055002-7
Based on the Gummel-Poon model of BJT, the change of the DC bias as a function of the AC input signal in RF linear power amplifiers is theoretically derived, so that the linearity of different DC bias circuits can be interpreted and compared. According to the analysis results, a quantitative adaptive DC bias circuit is proposed, which can improve the linearity and efficiency. From the simulation and test results, we draw conclusions on how to improve the design of linear power amplifier.  相似文献   

13.
Based on a self-developed A1GaN/GaN HEMT with 2.5 mm gate width technology on a SiC substrate, an X-band GaN combined solid-state power amplifier module is fabricated. The module consists of an AIGaN/GaN HEMT, Wilkinson power couplers, DC-bias circuit and microstrip line. For each amplifier, we use a bipolar DC power source. Special RC networks at the input and output and a resistor between the DC power source and the gate of the transistor at the input are used for cancellation of self-oscillation and crosstalk of low-frequency of each amplifier. At the same time, branches of length 3λ/4 for Wilkinson power couplers are designed for the elimination of self-oscillation of the two amplifiers. Microstrip stub lines are used for input matching and output matching. Under Vds = 27 V, Vgs = -4.0 V, CW operating conditions at 8 GHz, the amplifier module exhibits a line gain of 5.6 dB with power added efficiency of 23.4%, and output power of 41.46 dBm (14 W), and the power gain compression is 3 dB. Between 8 and 8.5 GHz, the variation of output power is less than 1.5 dB.  相似文献   

14.
金婕  史佳  艾宝丽  张旭光 《半导体学报》2016,37(2):025006-5
A three-stage power amplifier (PA) for WLAN application in 2.4-2.5 GHz is presented. The proposed PA employs an adaptive bias circuit to adjust the operating point of the PA to improve the linearity of the PA. Two methods to short the 2nd harmonic circuit are compared in the area of efficiency and gain of the PA. The PA is taped out in the process of 2 μm InGaP/GaAs HBT and is tested by the evaluation board. The measured results show that 31.5 dB power gain and 29.3 dBm P1dB with an associated 40.4% power added efficiency (PAE) under the single tone stimulus. Up to 26.5 dBm output power can be achieved with an error vector magnitude (EVM) of lower than 3% under the 64QAM/OFDM WLAN stimulus.  相似文献   

15.
This paper presents a 2.4 GHz power amplifier(PA) designed and implemented in 0.35μm SiGe BiCMOS technology.Instead of chip grounding through PCB vias,a metal plate with a mesa connecting ground is designed to decrease the parasitics in the PCB,improving the stability and the gain of the circuit.In addition,a low-pass network for output matching is designed to improve the linearity and power capability.At 2.4 GHz,a P_(1dB) of 15.7 dBm has been measured,and the small signal gain is 27.6 dB with S_(11)<-7 ...  相似文献   

16.
This paper presents a wideband RF front-end with novel current-reuse wide band low noise amplifier(LNA),current-reuse V –I converter,active double balanced mixer and transimpedance amplifier for short range device(SRD) applications.With the proposed current-reuse LNA,the DC consumption of the front-end reduces considerably while maintaining sufficient performance needed by SRD devices.The RF front-end was fabricated in 0.18 μm RFCMOS process and occupies a silicon area of just 0.11 mm2.Operating in 433 MHz band,the measurement results show the RF front-end achieves a conversion gain of 29.7 dB,a double side band noise figure of 9.7 dB,an input referenced third intercept point of –24.9 dBm with only 1.44 mA power consumption from 1.8 V supply.Compared to other reported front-ends,it has an advantage in power consumption.  相似文献   

17.
A model of Er3+-doped chalcogenide glass (GasGe20Sb10S65) microstructured optical fiber (MOF) amplifier under the excitation of 980 nm is presented to demonstrate the feasibility of it applied for 1.53 μm band optical communications. By solving the Er3+ population rate equations and light power propagation equations, the amplifying performance of 1.53 μm band signals for Er3+-doped chalcogenide glass MOF amplifier is investigated theoretically. The results show that the Er6+-doped chalcogenide glass MOF exhibits a high signal gain and broad gain spectrum, and its maximum gain for small-signal input (-40 dBm) exceeds 22 dB on the 300 cm MOF under the excitation of 200 mW pump power Moreover, the relations of 1.53 μm signal gain with fiber length, input signal power and pump power are analyzed. The results indicate that the Er3+-doped Ga5Ge20Sb10S65 MOF is a promising gain medium which can be applied to broadband amplifiers operating in the third communication window.  相似文献   

18.
Power allocation(PA)plays an important role in capacity improvement for cooperative multiple-input multiple-output(Co-MIMO)systems.Many contributions consider a total power constraint(TPC)on the sum of transmit power from all nodes in addressing PA problem.However,in practical implementations,each transmit node is equipped with its own power amplifier and is limited by individual power constraint(IPC).Hence these PA methods under TPC are not realizable in practical systems.Meanwhile,the PA problem under IPC is essential,but it has not been studied.This paper extends the traditional non-cooperative water-filling PA algorithm to IPC-based Co-MIMO systems.Moreover,the PA matrix is derived based on the compound channel matrix from all the cooperative nodes to the user.Therefore,the cooperative gain of the IPC-based Co-MIMO systems is fully exploited,and further the maximal instantaneous capacity is achieved.Numerical simulations validate that,under the same IPC conditions,the proposed PA scheme considerably outperforms the non-cooperative water-filling PA and uniform PA design in terms of ergodic capacity.  相似文献   

19.
A three-stage monolithic microwave integrated circuit (MMIC) power amplifier from 6-18 GHz, which achieves high output power with excellent efficiency, is designed, fabricated and tested. Measured results show that the saturated output power and the small signal gain are about 32 dBm and 23 dB, respectively. Thus, the power added efficiency of about 28% indicates that it is useful in various communication systems.  相似文献   

20.
In time division synchronous code division multiple access (TD-SCDMA) wireless communication systems, QPSK or 8PSK has been employed to support high data rate services and high efficiency in available bandwidth. The performance of such systems is affected by the phase noise of the microwave local oscillator. The phase noise model of synthesizer and the RF transceiver model for the phase noise effect are proposed for applications of TD-SCDMA systems. The relationship between the power spectral density (PSD) and root mean square (RMS) phase error is given. Then, the error vector magnitude (EVM) performance is analytically evaluated by using the single side band (SSB) phase noise. Theoretical results show agreement with those obtained by measurement data and therefore can be used to derive the TD-SCDMA system performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号