首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
微光夜视技术作为当今拓展人眼夜间视觉感知的主要技术之一,在军事和民用领域都有广泛的应用。随着数字图像处理技术的发展,微光视频器件为通过图像处理进一步提升夜视图像质量,为与红外热成像的图像信息融合,为提高夜间对目标探测/识别和场景理解能力等方面提供了广泛空间,成为当前国内外夜视技术发展的重要方向之一。论文综述了微光视频器件发展,分析了电真空+固体微光视频成像器件(如像增强CCD/CMOS(ICCD/ICMOS)器件、电子轰击EBCCD/EBCMOS器件等)、全固体微光视频成像器件(如电子倍增CCD器件、超低照度CMOS器件等)的特点和发展趋势,并结合法国PHOTONIS公司的LYNX计划,对微光夜视技术的发展进行了分析和讨论。  相似文献   

2.
作为全固态微光器件,InxGa1-xAs器件通过调节材料组分x值,其响应波段覆盖夜天光辐射的主要波段,对夜天光的能量利用率高。加之材料量子效率高,器件性能好,可望显著提高夜视系统作战距离;另外,采用半导体常规工艺制作,可完成大面阵、长线列器件制备,无需封装在(超)高真空系统,制备简单;采用CMOS读出电路进行信号数据的读取、传输与放大,有利于进行数据的处理和优化改善。由于具备的以上技术优势,InxGa1-xAs器件成为一种新型的高性能全固态数字化微光器件。InxGa1-xAs器件与传统的微光器件在光电转换原理以及器件制备方面存在不同,决定了两者在性能上存在的差异。文中对此进行了对比分析,分析结果体现了InxGa1-xAs全固态数字化微光器件的技术优势和特点,以及InxGa1-xAs全固态数字化微光器件存在的重要应用和发展需求。  相似文献   

3.
《红外技术》2015,(8):701-706
采用全固态微光成像器件是未来微光成像的发展趋势。介绍了2种全固态微光器件EMCCD、InxGa1-xAs,分析了其成像性能,描述了其研究现状,对比了传统的真空光电成像与全固态微光成像性能指标,阐明了微光成像器件向着高灵敏度、低噪声、宽光谱响应和强适应能力方向发展。  相似文献   

4.
《激光与红外》1995,25(6):56-56
微光子器件──微型片式固体激光器微型片式(microchip)固体激光器是一种新的微光子器件,它吸收了微电子学、微光学元件的技术。虽然其平均功率是低的,但具有稳定、可靠、高峰值功率、能在较低成本下大量生产的优点,因此有许多应用。微型片式Nd:YAG激...  相似文献   

5.
首先介绍了InGaAs台面探测器的研究进展,然后为了验证利用台面结制作背照射器件的可行性,利用分子束外延(MBE)方法生长的掺杂InGaAs吸收层PIN InP/InGaAs/InP双异质结外延材料,通过台面制作、钝化、电极生长、背面抛光等工艺,制备了8元台面InGaAs探测器,并测试了正照射和背照射时,器件的Ⅰ-Ⅴ、信号和响应光谱.测试结果表明,正照射和背照射情况下,器件的响应信号差别不大,正照射下器件的平均峰值探测率为4.1×1011 cm·Hz1/2·W-1,背照射下器件的平均峰值探测率为4.0×1011 cm·Hz1/2·W-1,但背照射情况下器件的响应光谱在短波方向有更好的截止.  相似文献   

6.
主要概述微光摄像技术、真空微光摄像器件、像增强CCD(ICCD)、电子轰击CCD(EBCCD)及微光摄像器件的发展现状。  相似文献   

7.
为了验证利用台面结制作背照射器件的可行性,利用分子束外延(MBE)方法生长的掺杂InGaAs吸收层PIN InP/InGaAs/InP双异质结外延材料,通过台面制作、钝化、电极生长、背面抛光等工艺,制备了8元台面InGaAs探测器,并测试了正照射和背照射时,器件的I-V、信号和响应光谱.测试结果表明,正照射和背照射情况下,器件的响应信号差别不大,正照射下器件的平均峰值探测率为4.13×1011cmHz1/2W-1,背照射下器件的平均峰值探测率为4×1011cmHz1/2W-1,但背照射情况下器件的响应光谱在短波方向有更好的截止.  相似文献   

8.
首先介绍了InGaAs台面探测器的研究进展,然后为了验证利用台面结制作背照射器件的可行性,利用分子束外延(MBE)方法生长的掺杂InGaAs吸收层PIN InP/InGaAs/InP双异质结外延材料,通过台面制作、钝化、电极生长、背面抛光等工艺,制备了8元台面InGaAs探测器,并测试了正照射和背照射时,器件的I-V、信号和响应光谱。测试结果表明,正照射和背照射情况下,器件的响应信号差别不大,正照射下器件的平均峰值探测率为4.1×1011cm·Hz1/2·W-1,背照射下器件的平均峰值探测率为4.0×1011cm·Hz1/2·W-1,但背照射情况下器件的响应光谱在短波方向有更好的截止。  相似文献   

9.
InGaAs四象限探测器   总被引:4,自引:0,他引:4  
采用InP/InGaAs/InP双异质结结构研制了对人眼安全的1.54~1.57 μm InGaAs四象限探测器.对器件结构设计和材料选择进行了讨论.在对响应时间、象限串扰、暗电流和响应度等参数进行计算与分析的基础上,优化了器件结构参数.实验结果表明,器件响应度达到0.90 A/W,响应时间为2 ns,暗电流低于5 nA,象限串扰达到1%(象限间隔20 μm),象限均匀性为4%.  相似文献   

10.
GaAs/InGaAs量子点光电探测器,在633 nm激光辐射3.5 nW条件下,器件偏压-1.4 V时,测得响应电流8.9×10-9A,电流响应率达到2.54 A/W,量子注入效率超过90%。基于GaAs/InGaAs量子点光电探测器的高量子注入效率、高灵敏度等特点,采用具有稳定的电压偏置,高注入效率和低噪声特点的CTIA(电容互阻跨导放大器)作为列放大器读出结构,输出部分采用相关双采样(CDS)结构去除系统和背景噪声。实验结果表明,在3.5 nW的微光辐射下,器件偏压为-2.5 V时,50μm×50μm像素探测器与读出电路互联后有7.14×107V/W的电压响应率。  相似文献   

11.
Waveguide multilayer optical card (WMOC) is a novel storage device of three-dimensional optical information. An advanced readout system fitting for the WMOC is introduced in this paper. The hardware mainly consists of the light source for reading, WMOC, motorized stages addressing unit, microscope imaging unit, CCD detecting unit and PC controlling & processing unit. The movement of the precision motorized stage is controlled by the computer through Visual Basic (VB) language in software. A control panel is also designed to get the layer address and the page address through which the position of the motorized stages can be changed. The WMOC readout system is easy to manage and the readout result is directly displayed on computer monitor.  相似文献   

12.
IntroductionNanoimprint Lithography is a well-acknowl-edged low cost, high resolution, large area pattern-ing process. It includes the most promising methods,high-pressure hot embossing lithography (HEL) [2],UV-cured imprinting (UV-NIL) [3] and micro contactprinting (m-CP, MCP) [4]. Curing of the imprintedstructures is either done by subsequent UV-lightexposure in the case of UV-NIL or by cooling downbelow the glass transition temperature of the ther-moplastic material in case of HEL…  相似文献   

13.
The collinearly phase-matching condition of terahertz-wave generation via difference frequency mixed in GaAs and InP is theoretically studied. In collinear phase-matching, the optimum phase-matching wave hands of these two crystals are calculated. The optimum phase-matching wave bands in GaAs and lnP are 0.95-1.38μm and 0.7-0.96μm respectively. The influence of the wavelength choice of the pump wave on the coherent length in THz-wave tuning is also discussed. The influence of the temperature alteration on the phase-matching and the temperature tuning properties in GaAs crystal are calculated and analyzed. It can serve for the following experiments as a theoretical evidence and a reference as well.  相似文献   

14.
Composition dependence of bulk and surface phonon-polaritons in ternary mixed crystals are studied in the framework of the modified random-element-isodisplacement model and the Bom-Huang approximation. The numerical results for Several Ⅱ - Ⅵ and Ⅲ- Ⅴ compound systems are performed, and the polariton frequencies as functions of the compositions for ternary mixed crystals AlxGa1-xAs, GaPxAS1-x, ZnSxSe1-x, GaAsxSb1-x, GaxIn1-xP, and ZnxCd1-xS as examples are given and discussed. The results show that the dependence of the energies of two branches of bulk phonon-polaritons which have phonon-like characteristics, and surface phonon-polaritons on the compositions of ternary mixed crystals are nonlinear and different from those of the corresponding binary systems.  相似文献   

15.
A doping system consisting of NPB and PVK is employed as a composite hole transporting layer (CHTL). By adjusting the component ratio of the doping system, a series of devices with different concentration proportion of PVK : NPB are constracted. The result shows that doping concentration of NPB enhances the competence of hole transporting ability, and modifies the recombination region of charge as well as affects the surface morphology of doped film. Optimum device with a maximum brightness of 7852 cd/m^2 and a power efficiency of 1.75 lm/W has been obtained by choosing a concentration proportion of PVK : NPB at 1:3.  相似文献   

16.
An insert layer structure organic electroluminescent device(OLED) based on a new luminescent material (Zn(salen)) is fabricated. The configuration of the device is ITO/CuPc/NPD/Zn(salen)/Liq/LiF/A1/CuPc/NPD/Zn(salen)/Liq/LiF/A1. Effective insert electrode layers comprising LiF(1nm)/Al(5 nm) are used as a single semitransparent mirror, and bilayer cathode LiF(1 nm)/A1(100 nm) is used as a reflecting mirror. The two mirrors form a Fabry-Perot microcavity and two emissive units. The maximum brightness and luminous efficiency reach 674 cd/m^2 and 2.652 cd/A, respectively, which are 2.1 and 3.7 times higher than the conventional device, respectively. The superior brightness and luminous efficiency over conventional single-unit devices are attributed to microcavity effect.  相似文献   

17.
Due to variable symbol length of digital pulse interval modulation(DPIM), it is difficult to analyze the error performances of Turbo coded DPIM. To solve this problem, a fixed-length digital pulse interval modulation(FDPIM) method is provided. The FDPIM modulation structure is introduced. The packet error rates of uncoded FDPIM are analyzed and compared with that of DPIM. Bit error rates of Turbo coded FDPIM are simulated based on three kinds of analytical models under weak turbulence channel. The results show that packet error rate of uncoded FDPIM is inferior to that of uncoded DPIM. However, FDPIM is easy to be implemented and easy to be combined, with Turbo code for soft-decision because of its fixed length. Besides, the introduction of Turbo code in this modulation can decrease the average power about 10 dBm, which means that it can improve the error performance of the system effectively.  相似文献   

18.
It is a key problem to accurately calculate beam spots' center of measuring the warp by using a collimated laser. A new method, named double geometrical center method (DGCM), is put forward for the first time. In this method, a plane wave perpendicularly irradiates an aperture stop, and a charge couple device (CCD) is employed to receive the diffraction-beam spots, then the geometrical centers of the fast and the second diffraction-beam spots are calculated respectively, and their mean value is regarded as the center of datum beam. In face of such adverse instances as laser intension distributing defectively, part of the image being saturated, this method can still work well. What's more, this method can detect whether an unacceptable error exits in the courses of image receiving, processing and calculating. The experimental results indicate the precision of this method is high.  相似文献   

19.
DUV lithography, using the 248 nm wavelength, is a viable manufacturing option for devices with features at 130 nm and less. Given the low kl value of the lithography, integrated process development is a necessary method for achieving acceptable process latitude. The application of assist features for rule based OPC requires the simultaneous optimization of the mask, illumination optics and the resist.Described in this paper are the details involved in optimizing each of these aspects for line and space imaging.A reference pitch is first chosen to determine how the optics will be set. The ideal sigma setting is determined by a simple geometrically derived expression. The inner and outer machine settings are determined, in turn,with the simulation of a figure of merit. The maximum value of the response surface of this FOM occurs at the optimal sigma settings. Experimental confirmation of this is shown in the paper.Assist features are used to modify the aerial image of the more isolated images on the mask. The effect that the diffraction of the scattering bars (SBs) has on the image intensity distribution is explained. Rules for determining the size and placement of SBs are also given.Resist is optimized for use with off-axis illumination and assist features. A general explanation of the material' s effect is discussed along with the affect on the through-pitch bias. The paper culminates with the showing of the lithographic results from the fully optimized system.  相似文献   

20.
From its emergence in the late 1980s as a lower cost alternative to early EEPROM technologies, flash memory has evolved to higher densities and speedsand rapidly growing acceptance in mobile applications.In the process, flash memory devices have placed increased test requirements on manufacturers. Today, as flash device test grows in importance in China, manufacturers face growing pressure for reduced cost-oftest, increased throughput and greater return on investment for test equipment. At the same time, the move to integrated flash packages for contactless smart card applications adds a significant further challenge to manufacturers seeking rapid, low-cost test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号