首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用溶液燃烧合成法制备了La2O3掺杂纳米钨(W)粉,分析了La2O3掺杂纳米W粉的致密化行为及La2O3对纳米W粉致密化行为的影响,研究了烧结后合金的显微组织形貌、导热性能及显微硬度。结果表明,La2O3会显著抑制纳米W粉的致密化速度,纯W粉在1350 ℃烧结后的相对密度可达到96.2%,而La2O3掺杂纳米W粉在1500 ℃烧结后的相对密度仅为95.0%。在1500 ℃烧结后的La2O3掺杂W合金的晶粒尺寸为0.57 μm,比纯W粉烧结合金的晶粒尺寸小一个数量级,因此其导热性能也较纯W粉烧结合金有所降低,但是显微硬度得到显著提升。  相似文献   

2.
采用纳米喷雾掺杂技术和粉末冶金方法制备了含不同质量分数氧化钇(Y2O3)和氧化铈(CeO2)的Mo–Y–Ce合金,分析了Y2O3和CeO2双相弥散强化对Mo合金晶粒度和室温力学性能的影响。结果表明,Y2O3可抑制个别晶粒异常长大,并具有沉淀强化效果。Mo–Y合金丝的力学性能与Y2O3掺杂量密切相关,当Y2O3质量分数为0.60%时,?1.8-mm Mo–Y合金丝抗拉强度为1050 MPa,屈服强度为923 MPa;CeO2因与Mo基体具有半共格关系而具有较好的韧化效果,当CeO2质量分数为0.06%~0.08%时,Mo–Y–Ce合金烧结态晶粒尺寸达10 μm以下,?1.8-mm Mo–Y–Ce合金丝抗拉强度为1130 MPa,屈服强度为1018 MPa,延伸率达到28.5%。?0.18-mm Mo–Y–Ce合金丝抗拉强度达2510 MPa。实验优化出Mo–Y–Ce双相弥散强化Mo合金的最优成分为Mo–0.6Y2O3–(0.06~0.08)CeO2。  相似文献   

3.
以分析纯Ca(OH)2和m-ZrO2为原料, 按物质的量1:1进行配料, 添加不同质量分数Fe2O3粉末作为添加剂, 经充分混合后压制成?20 mm×20 mm圆柱试样, 再经1600℃保温3 h煅烧制备得到锆酸钙陶瓷试样(CaZrO3)。利用显气孔体密测定仪、X射线衍射仪及扫描电子显微镜分析Fe2O3粉末添加剂对CaZrO3陶瓷材料烧结性能、物相组成及微观结构的影响。结果表明:当没有添加Fe2O3粉末时, 试样烧结前后线变化率为12.72%, 体积密度为3.92g·cm-3, 显气孔率为14.9%, CaZrO3晶粒尺寸为4.22μm; 当加入质量分数0.75%Fe2O3粉末时, 试样烧结前后线变化率为17.20%, 体积密度为4.68 g·cm-3, 显气孔率为6.8%, CaZrO3晶粒尺寸为5.21μm。  相似文献   

4.
以Al(NO3)3·9H2O、Ca(NO)2·4H2O、C8H20O4Si为原料, 采用高分子网络法制备出成分均匀、粒度分布为3~7μm、高活性的CaO–Al2O3–SiO2复合烧结助剂; 将质量分数为3%、5%、7%、9%的CaO–Al2O3–SiO2复合烧结助剂添加到Al2O3和ZrO2原料粉体中, 经干压成型, 在1450℃烧结温度、保温4h的工艺条件下进行常压烧结制备得到ZrO2/Al2O3复相陶瓷试样, 研究烧结助剂添加量对复相陶瓷力学性能和显微组织结构的影响。结果表明:当添加质量分数为5%的CaO–Al2O3–SiO2复合烧结助剂时, ZrO2/Al2O3复相陶瓷的综合性能最达到佳, 相对密度为94%, 显微维氏硬度为1204 MPa, 抗弯强度为321 MPa, 断裂韧性为4.52 MPa·m1/2。  相似文献   

5.
采用常压烧结法制备了铜-石墨-氧化锡(Cu-C-SnO2)复合多孔材料,对其物相组成和物理性能进行了分析测试,研究了SiO2-B2O3-Al2O3系助焊剂对Cu-C-SnO2多孔材料组织和性能的影响。结果表明,加入适量助焊剂有助于铜-石墨-氧化锡混合粉体烧结;助焊剂加入量(质量分数)在5%以下时,铜-石墨-氧化锡粉末烧结体的透气性和硬度随着助焊剂质量分数的增加而降低,粉末烧结体的导电性和烧结收缩率随着助焊剂质量分数的增加而升高;在730~770℃烧结,烧结温度对铜-石墨-氧化锡混合粉体的烧结工艺特性和烧结体性能影响不大。  相似文献   

6.
以W、Ni、Fe元素粉末和纳米Y2O3粉末为原料,制备97W-2Ni-1Fe和96.5W-2Ni-Fe-0.5Y2O3钨合金,通过扫描电镜(SEM)、能谱仪(EDS)等手段进行表征,并结合黏结相的面积分数和W晶粒接触度的分析,研究烧结温度与添加纳米Y2O3对高密度钨合金微观组织与力学性能的影响。结果表明:随烧结温度升高,钨合金的晶粒尺寸和力学性能明显增加。在1510℃(液相)烧结温度下,添加纳米Y2O3使钨晶粒尺寸从21.6μm减小至7.8μm,黏结相的面积分数从4.45%增加至5.35%,接触度为0.67,合金力学性能显著提升,抗拉强度达到611 MPa,硬度(HRC)为40.1。96.5W-2Ni-Fe-0.5Y2O3合金的拉伸断裂形态为黏结相的撕裂和少量W晶粒解理断裂,添加纳米Y2O3使得黏结相撕裂的比例增加。  相似文献   

7.
选择Al粉作为Al2O3粉末材料的改性剂, 采用热压注工艺制备汽车用Al2O3粉末材料试样, 研究不同Al粉添加量(质量分数)对Al2O3粉末材料组织结构和力学性能的影响。结果表明: Al2O3粉末热压注试样最大收缩率出现在长度方向, 最小收缩率出现于高度方向。随着Al粉质量分数的增加, Al2O3粉末热压注试样收缩率表现出先减小, 后稳定增加, 最后再减小的变化规律, 弯曲强度和体积密度降低, 气孔率显著升高, 试样挠度增高, 浇注得到更大孔径的结构, 同时试样中大尺寸孔径数量也显著增多。随着Al粉质量分数的增加, 试样中Al2O3衍射峰不断上升, 玻璃相的变化不大。加入质量分数8%的Al粉后, 试样断口区域生成了明显的颗粒结构, 说明试样主要发生沿晶断裂。  相似文献   

8.
本文以ZrOCl2·8H2O和Sc2O3为原料,聚乙二醇(PEG800)为分散剂,氨水为沉淀剂,采用共沉淀法制备了不同钪掺杂量的氧化钪稳定氧化锆(ScSZ)复合粉体,并通过TG/DSC热分析、ICP、XRD、Raman和SEM等分析手段对样品进行表征,研究了Sc2O3掺杂对ZrO2前驱体热稳定性和ZrO2粉体物相、形貌等的影响,还探讨了洗涤方式对所制备的ScSZ粉体形貌的影响。结果表明:ZrO2和ScSZ前驱体均为无定形状态,经煅烧后ScSZ前驱体的总失重量大于ZrO2前驱体的总失重量;未掺杂钪所制备的ZrO2粉体为单斜相,钪掺杂改变了物相,ScSZ粉体为四方和立方相的混合晶型;钪掺杂对ZrO2粉体的粒径无明显影响,ZrO2和ScSZ粉体均发生一定团聚,团聚体直径约为0.5~3μm;采用乙醇洗涤有利于减小ScSZ粉体的初级纳米颗粒粒径,减小团聚现象,粉末团聚较松散。  相似文献   

9.
稀土氧化物可作为稳定剂、烧结助剂、掺杂改性剂加入到ZrO2陶瓷材料中,能极大地提高和改善陶瓷材料的强度、韧性,降低其烧结温度,减少生产成本.文中简要综述了稀土氧化物ZrO2陶瓷材料的制备及应用研究状况,包括Y2O3复合ZrO2陶瓷粉体、富铈稀土氧化物复合ZrO2陶瓷粉末、Nd2O3复合ZrO2陶瓷材料、Pr2O3\Pr6O11复合ZrO2陶瓷、La2O3复合ZrO2陶瓷、Yb2O3复合ZrO2陶瓷、Sm2O3复合ZrO2陶瓷材料及氧化锆中掺杂多种稀土氧化物陶瓷粉体的制备和应用,分析讨论了一些需要解决的问题,并展望了稀土复合ZrO2陶瓷制备技术及未来研究发展趋势.   相似文献   

10.
采用“缺碳预还原+氢气深脱氧”方法制备了不同Cu含量(5%、20%、40%,质量分数)的超细Mo–Cu复合粉末。通过高温煅烧钼酸铵和硝酸铜混合物制备了MoO3和CuO复合氧化物,再利用炭黑预还原脱除煅烧产物(CuMoO4–MoO3)中绝大部分氧的方法制备了含有少量MoO2的超细预还原Mo–Cu复合粉体;少量MoO2的存在可以极大降低预还原产物中碳的残留;最后,经氢还原脱除残留的氧制备得到超细、高纯度Mo–Cu复合粉体,粉体粒度约为200 nm。以Mo–Cu复合粉体为原料,经过压坯和烧结制备得到细晶Mo–Cu合金。结果表明,经过1200 ℃烧结后,随着Cu质量分数由5%增加到20%,合金相对密度由96.3%增加到98.5%,且Mo、Cu两相分布均匀。Mo–Cu合金硬度随Cu含量的增加而先增加后降低,这是由合金相对密度和铜含量对硬度的影响不同所导致的。随着Cu质量分数由5%增加到40%,Mo–Cu合金的热导率由48.5 W·m?1·K?1增加到187.2 W·m?1·K?1,电导率由18.79% IACS增加到49.48% IACS。  相似文献   

11.
以溶胶凝胶法制备的6% Al2O3/Mo复合粉末为原料,采用微波烧结技术制备了6% Al2O3/Mo复合材料.研究了微波烧结温度及烧结时间对复合材料的结构及性能的影响,并探讨了复合粉末的微波烧结动力学.结果表明:溶胶凝胶法制备的6% Al2O3/Mo复合粉末形貌呈平滑多边形和近球形;Al2O3/Mo复合材料的致密度及硬度均随着微波烧结温度及烧结时间的增加而增加;1 600 ℃下烧结30 min的6% Al2O3的复合材料致密度及硬度达到98.1%和2.969 GPa. Al2O3/Mo复合粉体微波烧结的致密化机制是体积扩散和晶界扩散共同作用结果,且随烧结温度升高,体积扩散逐渐占据主导地位,其微波烧结激活能在1 500~1 600 ℃范围内为201.93 kJ/mol.研究结果显示微波烧结是一种快速制备高致密Al2O3/Mo复合材料的有效方法.   相似文献   

12.
为进一步提升高质量WC涂层的耐磨性、耐海水腐蚀性和耐海水气蚀性。采用大气超音速火焰喷涂(HVAF)在0Cr13Ni5Mo基体上制备稀土La2O3改性WC-20Cr3C2-11NiMo涂层。通过显微硬度测试、平面孔隙测试、摩擦磨损实验、电化学实验和模拟海水超声波气蚀实验,测试涂层的显微硬度、孔隙率、摩擦因数、摩擦磨损性能、耐海水腐蚀性能和耐海水气蚀性能,分析La2O3对WC-20Cr3C2-11NiMo涂层耐磨耐蚀性能的影响。结果表明,改性后的涂层显微硬度提升到1400 HV0.2左右,平均孔隙率降低约48.6%;涂层磨损质量降低约33%,摩擦因数降低约30%,摩擦磨损表面微凹坑和微裂纹明显减少;电化学自腐蚀电位明显右移,电化学自腐蚀电流密度明显减小;涂层的气蚀质量损失减少约20%,气蚀坑洞明显减少和变小。HVAF喷涂La2O3改性后的WC-20Cr3C2-11NiMo涂层硬度略微提升,致密性、耐磨性、耐海水腐蚀性和耐海水气蚀性得到明显提升,除表面疲劳磨损外,表面摩擦磨损机理从严重磨粒磨损转变为轻微磨粒磨损,气蚀机理主要为流体冲击波侵蚀。  相似文献   

13.
采用溶胶-凝胶法制备Al2O3/Mo混合粉体,利用高能球磨法细化Al2O3/Mo复合材料中氧化铝和钼的晶粒尺寸,研究了球磨时间对Al2O3/Mo复合材料组织与性能的影响,利用XRD和扫描电镜对复合粉末形貌和复合材料进行了物相和形貌分析。研究表明:随着球磨时间的延长,复合粉末的形貌经历了球状到层片状再到球状的变化,粉末粒度逐渐减小,经粉末冶金烧结后的复合材料中,氧化铝和钼的粒径逐渐减小,经过60h的球磨,氧化铝颗粒的尺寸达到500nm左右;复合材料的密度呈现先增加后减小的趋势,显微硬度则逐渐上升至403.2HV。  相似文献   

14.
利用激光熔覆技术在Q235钢基体表面分别制备出添加不同质量分数Y2O3的AlCoCrFeNi高熵合金涂层。采用X射线衍射仪、扫描电子显微镜、显微硬度计和摩擦磨损试验机对AlCoCrFeNi高熵合金涂层的微观组织、硬度及摩擦磨损性能进行了分析。结果表明:AlCoCrFeNi高熵合金涂层由面心立方结构(FCC)和体心立方结构(BCC)两相构成;随着Y2O3质量分数的提高,其体心立方结构相体积分数增加,而面心立方结构相的体积分数变化呈相反趋势。AlCoCrFeNi高熵合金涂层组织由等轴晶构成,加入Y2O3后,促进了熔池流动,使气孔逐渐消失,致密性提高,晶粒明显细化。添加质量分数5%Y2O3的涂层组织呈树枝晶状,形成弥散分布的YAl2和Y2O3相;涂层的显微硬度可达HV 350,约为AlCoCrFeNi高熵合金涂层硬度的2倍,强化效果明显。Y2O3的添加有利于促进涂层中体心立方相的形成和YAl2相的析出,能有效提高高熵合金涂层的硬度及耐磨性能。  相似文献   

15.
以炭黑为还原剂还原MoO3制备存在少量MoO2的预还原Mo粉,然后对预还原Mo粉进行氢气深还原,成功制备出平均粒径为99~190 nm的超细钼粉,研究了碳热还原温度对Mo粉平均粒度和残碳量的影响。结果表明,在同一还原温度下,当C/MoO3摩尔比从2.0增加到2.1时,产物的粒径变化很小。碳热还原温度对产物粒径和纯度有显著影响。当C/MoO3摩尔比为2.1时,还原温度从950 ℃增加到1150 ℃,氢还原后钼粉的平均粒径从100 nm增加到190 nm,且残碳量(质量分数)由0.030%降低到0.009%。  相似文献   

16.
针对ZrB2陶瓷粉末在球磨时易掺入ZrO2,影响ZrB2陶瓷烧结致密化的问题,添加B4C作为烧结助剂,采用无压烧结法制备ZrB2陶瓷材料,研究B4C含量(w(B4C),下同)对材料微观形貌、硬度与抗弯强度的影响。结果表明,B4C通过与晶粒表面的ZrO2发生反应,抑制ZrB2晶粒粗化,减小晶粒尺寸,从而提高烧结致密度。随B4C含量增加,ZrB2陶瓷的晶粒尺寸和相对密度逐渐增大,抗弯强度和硬度先升高后降低。当w(B4C)为7%时,ZrB2晶粒细小,材料的抗弯强度和硬度(HV)达到最大,分别为242 MPa和12.65 GPa。w(B4C)增加至9%时,出现晶粒异常长大,材料力学性能下降。  相似文献   

17.
采用两步烧结法制备了掺杂质量分数为7%TiN的NiFe2O4/TiN复合陶瓷惰性阳极材料,重点研究了烧结温度对NiFe2O4/TiN复合陶瓷惰性阳极材料的微观结构及性能的影响.研究结果表明:随着烧结温度的升高,惰性阳极材料的晶粒间隙变小,气孔逐渐减少,晶粒间结合度提高,体积密度呈先升高后降低趋势,在1325℃时达到最大值5.20g/cm3,但材料内部存在微裂纹;烧结温度为1300℃时,材料表现出较好的综合性能,抗弯强度达到最大值66.77MPa,一次热震强度剩余率为95.54%,表现出良好的耐高温冰晶石熔盐腐蚀能力;烧结温度超过1300℃时,材料内部缺陷尺寸增加,电解质成分更容易渗入到阳极材料中,耐腐蚀性能下降.  相似文献   

18.
通过固-液掺杂法在Mo-Re合金中加入稀土La2O3纳米颗粒制备得到Mo-Re-La合金, 将Mo-Re-La合金与Mo-Re合金、纯Mo的微观组织及力学性能进行对比研究, 得到如下结论: 在纯Mo中添加低含量Re元素(质量分数3.5%) 对Mo-Re合金有明显的细晶强化效果; 将La2O3纳米颗粒加入Mo-Re合金进一步细化和强化了Mo-Re-La合金。  相似文献   

19.
分别采用固-固、液-固和液-液掺杂方式向钼粉中引入Al2O3,然后用粉末冶金法制备出掺杂钼粉,经压制、烧结制成Al2O3颗粒增强钼基复合材料.对掺杂钼粉及钼坯进行SEM形貌观察,并测定复合材料的密度和显微硬度.结果表明,液-液掺杂能够制备出粉末颗粒小、密度及硬度高的Al2O3/Mo复合材料,其掺杂Al2O3颗粒细小且分布较均匀.  相似文献   

20.
以纳米Al2O3颗粒、超细WC粉末、工业纯Cu粉末为原料, 通过热挤压致密获得了超细WC/纳米Al2O3弥散强化铜基(WC-Al2O3/Cu)复合材料, 研究了挤压态WC-Al2O3/Cu复合材料的微观组织及力学性能。结果表明: 成分为5% WC-2% Al2O3/Cu和10% WC-2% Al2O3/Cu (质量分数)的两种原料粉末, 经机械球磨、冷压、真空烧结和热挤压后, 其相对密度均达到了99%以上, 超细WC和纳米Al2O3强化相颗粒呈均匀弥散分布, 具有很好的导电性及力学性能; 其中, 5% WC-2% Al2O3/Cu复合材料的综合性能更佳, 其抗拉强度达到235.06 MPa, 延伸率为15.47%, 导电率可达85.28% IACS, 软化温度不低于900℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号