首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A heat exchange model has been developed, by which the thermal stress associated with work in cold environments can be evaluated. Based on measurements of air temperature, mean radiant temperature, humidity and air velocity and measurements or estimates of activity level (energy metabolism) the model calculates a clothing insulation (IREQ) required to maintain body heat balance. IREQ may be regarded as an index of cold stress, and the value for IREQ specifies the insulation to be provided by clothing under given conditions, in addition to the insulation of the boundary air layer. IREQ, hence, may serve as a guideline for selection of appropriate clothing in cold environments. Basic insulation values of clothing (IcI) measured with thermal manikins can be used for this purpose, but need to be corrected to account for the effect of body motion, posture, wind penetration and moisture absorption before a comparison is made with IREQ.  相似文献   

2.
Wu YS  Fan JT  Yu W 《Ergonomics》2011,54(3):301-313
Evaporative resistance and thermal insulation of clothing are important parameters in the design and engineering of thermal environments and functional clothing. Past work on the measurement of evaporative resistance of clothing was, however, limited to the standing posture with or without body motion. Information on the evaporative resistance of clothing when the wearer is in a sedentary or supine posture and how it is related to that when the wearer is in a standing posture is lacking. This paper presents original data on the effect of postures on the evaporative resistance of clothing, thermal insulation and permeability index, based on the measurements under three postures, viz. standing, sedentary and supine, using the sweating fabric manikin-Walter. Regression models are also established to relate the evaporative resistance and thermal insulation of clothing under sedentary and supine postures to those under the standing posture. The study further shows that the apparent evaporated resistances of standing and sedentary postures measured in the non-isothermal condition are much lower than those in the isothermal condition. The apparent evaporative resistances measured using the mass loss method are generally lower than those measured using the heat loss method due to moisture absorption or condensation within clothing. STATEMENT OF RELEVANCE: The thermal insulation and evaporative resistance values of clothing ensembles under different postures are essential data for the ergonomics design of thermal environments (e.g. indoors or a vehicle's interior environment) and functional clothing. They are also necessary for the prediction of thermal comfort or duration of exposure in different environmental conditions.  相似文献   

3.
4.
In this study, three methods were used to determine the thermal insulation values of different school clothing worn by 6 to 17 year old girls and boys in Kuwait classrooms for both summer and winter seasons. The different clothing ensembles' insulations were determined by 1: measurement using adult-sized versions of the clothing on thermal manikins, 2: estimations from adult clothing data obtained from the standards tables in ISO 9920 and ASHRAE 55, and 3: calculations using a regression equation from McCullough et al. (1985) that was adapted to accommodate children's sizes for ages 6-17 years. Values for the clothing area factor, f(cl), were also determined by measurement and by using a prediction equation from ISO 9920. Results in this study suggested that the clothing insulation values found from the measured and adapted data were similar to the adult's data in standards tables for the same summer and winter seasons. Further, the effect of the insulation values on the different scholars' age groups were investigated using the clothing temperature rating technique and compared to the scholars' comfort temperature found in recent field studies. Results showed that the temperature ratings of the clothing using the three methods described above are close and in agreement with the scholars' comfort temperature. Though estimated and measured f(cl) data differed, the impact on the temperature ratings was limited. An observed secular change in the children's heights and weights in the last few decades implies that, for adolescents, the children's body surface areas are similar to those of adults, making the use of adult clothing tables even more acceptable. In conclusion, this study gives some evidence to support the applicability of using adults' data in ASHRAE 55 and ISO 9920 standards to assess the thermal insulation values of different children's clothing ensembles, provided that careful selection of the garments, ensembles material and design takes place.  相似文献   

5.
The effect of the appraisers on the estimation of the thermal insulation of clothing ensembles was investigated. Nine appraisers, four experienced and five inexperienced, estimated the total thermal insulation by summing the values for individual garments. Lists of individual garments worn by workers were given during thermal comfort measurements carried out in shops and stores during one winter and summer. The beginners estimated the thermal insulation as accurately as the experienced appraisers. There were, however, great individual differences, for which three main reasons were found. Interpolation between the insulation provided by two garments was insufficient, and the insulation of these garments should be checked in more precise tables. Classification of the garments into heavy, medium and light clothing items was not adequate, and garments not listed by the workers confused the estimation given by different appraisers. The effect of error in thermal insulation on the PMV index is negligible if more than one appraiser estimates the thermal insulation and the mean of the estimates is used.  相似文献   

6.
《Ergonomics》2012,55(12):1617-1631
Abstract

Intrinsic thermal clothing insulation and surface air insulation were measured on human subjects by the use of indirect calorimetry. Four male clothing ensembles (0-1-1 -8 clo) and three female clothing ensembles (0-2-1-2 clo) were investigated. Using the standing position as a reference, the influence of sitting, bicycling (40r.p.m., 20 W), walking (3-75 km hour?1) and of light packing work on the thermal insulation was studied. The influence of an air velocity of 11ms?1 on thermal insulation during the standing and walking conditions was investigated. The results showed that: (i) intrinsic clothing insulation was maximal in the standing position. It was reduced by 8-18% in the seated position and by 30-50% during bicycling and walking. An air velocity of 11ms?1 did not influence the intrinsic clothing insulation during walking, but decreased it by 18% in the standing position; (ii) surface air insulation varied with activity and air velocity, but not with clothing. It was increased by up to 25% in the seated position, reduced by 7-26% during bicycling and by 30-50% during walking. An air velocity of 11 ms-1 reduced the surface air insulation by 50% in the standing position and 30% during walking.  相似文献   

7.
Lee Y  Hong K  Hong SA 《Applied ergonomics》2007,38(3):349-355
Garment fit and resultant air volume is a crucial factor in thermal insulation, and yet, it has been difficult to quantify the air volume of clothing microclimate and relate it to the thermal insulation value just using the information on the size of clothing pattern without actual 3D volume measurement in wear condition. As earlier methods for the computation of air volume in clothing microclimate, vacuum over suit and circumference model have been used. However, these methods have inevitable disadvantages in terms of cost or accuracy due to the limitations of measurement equipment. In this paper, the phase-shifting moiré topography was introduced as one of the 3D scanning tools to measure the air volume of clothing microclimate quantitatively. The purpose of this research is to adopt a non-contact image scanning technology, phase-shifting moiré topography, to ascertain relationship between air volume and insulation value of layered clothing systems in wear situations where the 2D fabric creates new conditions in 3D spaces. The insulation of vests over shirts as a layered clothing system was measured with a thermal manikin in the environmental condition of 20 degrees C, 65% RH and air velocity of 0.79 m/s. As the pattern size increased, the insulation of the clothing system was increased. But beyond a certain limit, the insulation started to decrease due to convection and ventilation, which is more apparent when only the vest was worn over the torso of manikin. The relationship between clothing air volume and insulation was difficult to predict with a single vest due to the extreme openings which induced active ventilation. But when the vest was worn over the shirt, the effects of thickness of the fabrics on insulation were less pronounced compared with that of air volume. In conclusion, phase-shifting moiré topography was one of the efficient and accurate ways of quantifying air volume and its distribution across the clothing microclimate. It is also noted that air volume becomes more crucial factor in predicting thermal insulation when clothing is layered.  相似文献   

8.
A novel design of personal cooling clothing incorporating additional insulation sandwiched between phase change materials (PCMs) and clothing outer layer is proposed. Performance of four personal cooling systems including clothing with only PCMs, clothing with PCMs and insulation (PCM?+?INS), clothing with PCMs and ventilation fans (HYB), and clothing with PCMs, ventilation fans and insulation (HYB?+?INS) was investigated. Effect of additional insulation on clothing cooling performance in terms of human physiological and perceptual responses was also examined. Human trials were carried out in a hot environment (i.e. 36?°C, RH = 59%). Results showed that significantly lower mean skin/torso temperatures were registered in HYB?+?INS as compared to HYB. In contrast, no significant effect of the use of insulation on both skin and body temperatures between PCM and PCM?+?INS was observed. Also, no significant difference in thermal sensations, thermal comfort, and skin wetness sensation was registered between cooling systems with and without additional insulation.

Practitioner Summary: Hybrid personal cooling clothing has shown the ability to provide a relatively cool microclimate around the wearer’ body while working in hot environments. The present work addresses the importance of cooling energy saving for PCMs in a hot environment. This work contributes to optimising cooling performance of hybrid personal cooling systems.  相似文献   


9.
《Ergonomics》2012,55(10):963-974
This study was undertaken in order to analyse the importance of the pumping effect on clothing's thermal insulation. To enhance differences in heat exchanges due to the pumping effect, two sets of condition were fixed, minimizing either the convective or the radiative heat transfers. The results showed that: (i) the clothing insulation determined on a manikin, even if he is moving, is larger than the resultant clothing insulation for living subjects; (ii) the insulation is not the same for radiant heat or cold as for convective heat or cold;(iii) the pumping effect can increase or decrease the resultant clothing insulation; (iv) the clothing insulation is smaller in warmer conditions thanin cooler ones; (v) it becomes necessary to make a definite distinction between several kinds of clothing insulation; intrinsic or basic insulation against radiation and convection; effective insulation against radiation and convection taking into account only the heat flowing through the clothing fabric; resultant insulation taking into account the magnitude of the pumping effect when clothing is worn by living subjects  相似文献   

10.
Qian X  Fan J 《Applied ergonomics》2009,40(4):577-1701
Based on the improved understanding of the effects of wind and walking motion on the thermal insulation and moisture vapour resistance of clothing induced by air ventilation in the clothing system, a new model has been derived based on fundamental mechanisms of heat and mass transfer, which include conduction, diffusion, radiation and natural convection, wind penetration and air ventilation. The model predicts thermal insulation of clothing under body movement and windy conditions from the thermal insulation of clothing measured when the person is standing in the still air. The effects of clothing characteristics such as fabric air permeability, garment style, garment fitting and construction have been considered in the model through the key prediction parameters. With the new model, an improved prediction accuracy is achieved with a percentage of fit being as high as 0.96.  相似文献   

11.
When a work scenario in protective clothing is a nominal two hours of work followed by a short break, the level of heat stress must be limited to conditions of thermal equilibrium. By comparing changes in maximum sustainable work rate in a fixed environment, differences due to different protective clothing ensembles can be determined. To illustrate this principle, two protective clothing ensembles were examined. The Basic Ensemble was a cotton blend coverall over gym shorts with hard hat, gloves and full face mask respirator. The Enhanced Ensemble added a light weight, surgical scrub suit under the coveralls, plus a hood worn under the hard hat. Five young, acclimated males were the test subjects. Environmental conditions were fixed at Tdb=32°C and Tpwb=26°C. After a physiological steady state was established at a low rate of work, treadmill speed was increased by 0.04 m/s every 5 min. The trial continued until thermal equilibrium was clearly lost. A critical treadmill speed was noted at the point thermal equilibrium was lost for each ensemble and subject. The drop in treadmill speed from the basic to enhanced ensemble was 11%. Based on measured values of average skin temperature and metabolic rate at the critical work rate and estimated values of clothing insulation, the average evaporative resistances for the basic and enhanced ensembles were 0.018 and 0.026 kPa m2/W, respectively.

Relevance to industry

Protective clothing decisions are based on the need to reduce the risk of skin contact with chemical or physical hazards. Sometimes over-protection of the skin results in a hazard secondary to the skin, such as heat stress. With or without over-protection, protective clothing decisions may affect the level of heat stress and result in lower rates of sustainable work. This paper illustrates the affects of a relatively small change in protective clothing requirements on the ability to work in the heat.  相似文献   


12.
The aim of the presented experiments was to determine thermal stress of surgeons performing their work with a high metabolic rate, wearing clothing characterized by high insulation and impermeability protecting them against water vapour but also in thermal conditions of a warm climate protecting patients against hypothermia. The experiments were conducted with the participation of 8 volunteers. Each subject took part in the experiment four times, i.e. in each of the four tested surgical gowns. The experiments were conducted in a climatic chamber where thermal conditions characteristic of an operating theatre were simulated. The parameters to be measured included: skin temperature, temperature measured in the auditory canal, sweat rate as well as temperature and humidity between clothing and a human body. The conducted experiments provided the grounds to conclude that medical clothing can be regarded as barrier clothing and it can influence thermal load of a human body.  相似文献   

13.
Heat stress can be a significant problem for pilots wearing protective clothing during flights, because they provide extra insulation which prevents evaporative heat loss. Heat stress can influence human cognitive activity, which might be critical in the flying situation, requiring efficient and error-free performance. This study investigated the effect of wearing protective clothing under various ambient conditions on physiological and cognitive performance. On several occasions, eight subjects were exposed for 3 h to three different environmental conditions; 0 degrees C at 80% RH, 23 degrees C at 63% RH and 40 degrees C at 19% RH. The subjects were equipped with thermistors, dressed as they normally do for flights (including helmet, two layers of underwear and an uninsulated survival suit). During three separate exposures the subjects carried out two cognitive performance tests (Vigilance test and DG test). Performance was scored as correct, incorrect, missed reaction and reaction time. Skin temperature, deep body temperature, heart rate, oxygen consumption, temperature and humidity inside the clothing, sweat loss, subjective sensation of temperature and thermal comfort were measured. Rises in rectal temperature, skin temperature, heart rate and body water loss indicated a high level of heat stress in the 40 degrees C ambient temperature condition in comparison with 0 degrees C and 23 degrees C. Performance of the DG test was unaffected by ambient temperature. However, the number of incorrect reactions in the Vigilance test was significantly higher at 40 degrees C than at 23 degrees C (p = 0.006) or 0 degrees C (p = 0.03). The effect on Vigilance performance correlated with changes in deep-body temperature, and this is in accordance with earlier studies that have demonstrated that cognitive performance is virtually unaffected unless environmental conditions are sufficient to change deep body temperature.  相似文献   

14.
15.
Combinations of clothing provide different degrees of thermal insulation for various parts of the body. The effect of this uneven thermal insulation on general comfort is examined by using experimental clothing which could provide varying degrees of thermal resistance. The relationship between skin temperature and sensation was found to be approximately linear when the exposed areas were not large, and that clothing of the same thermal resistance can yield different sensations depending on the parts of the body involved.  相似文献   

16.
This study examined the physical and physiological differences between children and adults that affect body heat generation and losses and then developed a heat loss model for determining the temperature ratings of cold weather clothing designed for use by children of various ages. The thermal insulation values of selected jackets were measured using a heated manikin dressed in two base ensembles, and the temperature ratings were calculated using the model. The results indicated that the type of garments used in the base ensemble had a major effect on jacket ensemble insulation and the predicted comfort temperature. For a given level of insulation, the temperature rating decreased as the wearer's age and activity level increased. This is probably because children have a higher surface area per unit mass ratio than adults, and they lose heat faster. However, this effect is partially offset by their higher metabolic rates.  相似文献   

17.
Estimated insulation (Icl) of clothing worn by workers daily exposed to air temperatures between 0 and 15 degrees C was compared with the corresponding insulation calculated for thermal neutrality using the IREQ-model (IREQneutral, ISO/TR 11079). The goal was to determine possible limitations of the applicability of the IREQ-model and to stress to necessities and possibilities to improve the model. Sixteen female and 59 male workers (16-56 yr) were monitored during their work. According to their cold stress at the workplace they were allocated to three groups (33 persons were exposed to constant temperatures of more than 10 degrees C, 32 to less than 10 degrees C, and 10 persons experienced frequent temperature changes of 13 degrees C. Another categorization concerned workload (8 persons worked at metabolic rates of less than 100 W/m2, 50 persons worked at 101-164 W/m2, and 17 worked at more than 165 W/m2, respectively). The analysis of the differences between estimated worn insulation (Icl) and calculated IREQneutral revealed that the IREQ-model applies for air temperatures up to 15 degrees C and for temperature changes of 13 degrees C (at least) but needs to be improved with respect to gender. The IREQ model does not apply sufficiently for high and largely varying workloads (165 W/m2 and more). However, these situations are beyond the currently available possibilities to protect workers adequately with conventional clothing material. A suitable short-term measure is a more even work flow by avoiding activities with very high and low metabolic rates.  相似文献   

18.
Aptel M 《Applied ergonomics》1988,19(4):301-305
Required Clothing Insulation (IREQ) is a new thermal index submitted to the International Organisation for Standardisation (ISO) for discussion. It is designed to prevent general body cooling and is based on an analysis of heat exchanges. The thermal clothing insulation actually worn (lcl) is estimated using a new method, also submitted to ISO.

IREQ of 54 workers exposed to artificial cold (air temperature between −30° C and +10° C) was compared with lcl actually worn by these workers. The results of the present study show that, on average, the workers choose accurately lcl they need if their IREQ is below and up to 1·5 clo. Moreover, these workers prefer to wear garments which provide them with thermal comfort. If IREQ of workers is higher than 1·5–2 clo (i e, workers exposed to −20° C), it is difficult for them to increase their thermal insulation with additional garments. Although their lcl is not sufficient, there is no risk of gradual body cooling because of their continuous time exposure (CTE) which is shorter than the calculated Duration Limited Exposure (DLE). On the other hand, Wind Chill Index (WCI), which is proposed to prevent local cooling, is better adapted to prevent cold injuries than physiological thermal strain; for example, impairment of manual dexterity cannot be prevented with this index.  相似文献   


19.
《Ergonomics》2012,55(8):780-799
Heat stress can be a significant problem for pilots wearing protective clothing during flights, because they provide extra insulation which prevents evaporative heat loss. Heat stress can influence human cognitive activity, which might be critical in the flying situation, requiring efficient and error-free performance. This study investigated the effect of wearing protective clothing under various ambient conditions on physiological and cognitive performance. On several occasions, eight subjects were exposed for 3 h to three different environmental conditions; 0°C at 80% RH, 23°C at 63% RH and 40°C at 19% RH. The subjects were equipped with thermistors, dressed as they normally do for flights (including helmet, two layers of underwear and an uninsulated survival suit). During three separate exposures the subjects carried out two cognitive performance tests (Vigilance test and DG test). Performance was scored as correct, incorrect, missed reaction and reaction time. Skin temperature, deep body temperature, heart rate, oxygen consumption, temperature and humidity inside the clothing, sweat loss, subjective sensation of temperature and thermal comfort were measured. Rises in rectal temperature, skin temperature, heart rate and body water loss indicated a high level of heat stress in the 40°C ambient temperature condition in comparison with 0°C and 23°C. Performance of the DG test was unaffected by ambient temperature. However, the number of incorrect reactions in the Vigilance test was significantly higher at 40°C than at 23°C (p = 0.006) or 0°C (p = 0.03). The effect on Vigilance performance correlated with changes in deep-body temperature, and this is in accordance with earlier studies that have demonstrated that cognitive performance is virtually unaffected unless environmental conditions are sufficient to change deep body temperature.  相似文献   

20.
《Ergonomics》2012,55(1):166-182
The high level of protection required by protective clothing (PPC) severely impedes heat exchange by sweat evaporation. As a result work associated with wearing PPC, particularly in hot environments, implies considerable physiological strain and may render workers exhausted in a short time. Current methods of describing evaporative heat exchange with PPC are insufficient, will overestimate evaporative heat loss and should not be recommended. More reliable measures of the resistance to evaporative heat transfer by PPC should be developed and standardized. Direct measurements of evaporative resistance of PPC may be carried. However, a more promising method appears to be the definition of evaporative resistance on the basis of the i cl-index for the fabric layers. The i cl-mdex is a permeation efficiency ratio, which in combination with clothing insulation determines the evaporative heat transfer. Current methods should be further developed to account for effects of moisture condensation and microclimate ventilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号