首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Qian X  Fan J 《Applied ergonomics》2009,40(4):577-1701
Based on the improved understanding of the effects of wind and walking motion on the thermal insulation and moisture vapour resistance of clothing induced by air ventilation in the clothing system, a new model has been derived based on fundamental mechanisms of heat and mass transfer, which include conduction, diffusion, radiation and natural convection, wind penetration and air ventilation. The model predicts thermal insulation of clothing under body movement and windy conditions from the thermal insulation of clothing measured when the person is standing in the still air. The effects of clothing characteristics such as fabric air permeability, garment style, garment fitting and construction have been considered in the model through the key prediction parameters. With the new model, an improved prediction accuracy is achieved with a percentage of fit being as high as 0.96.  相似文献   

2.
3.
Li J  Guo X  Wang Y 《Applied ergonomics》2012,43(5):909-915
Each piece of Western clothing has a unique temperature rating (TR); however, based on different wearing ways, one Tibetan robe ensemble can be used in various environments of the Tibetan plateau. To explain this environmental adaptation, thermal insulations and TR values of Tibetan robe ensembles in three typical wearing ways were measured by manikin testing and wearing trials, respectively. The TR prediction models for Tibetan robe ensembles were built in this research. The results showed that the thermal insulations of Tibetan robe ensembles changed from 0.26 clo to 0.91 clo; the corresponding TRs ranged from 9.90 °C to 16.86 °C because of different wearing ways. Not only the thermal insulation, but also the ways of wearing Tibetan robes was important to determining their TR values. The three TR models and a triangle area for each piece of Tibetan clothing explained its positive adaptation into the environment; this was different from the current TR models for Western clothing.  相似文献   

4.
《Ergonomics》2012,55(12):987-998
Abstract

These experiments were performed at the Syowa Station in Antarctica (69°00'S, 39° 35'E) where a straight ski course was constructed (length 100m. gradient 12°). The conditions were as follows; wind velocity: 0-0·5ms?1, temperature: ? 25°C, snow temperature: ?29·5°C.snow density: 0·309 gcm?3. Running speed was measured by a coil-magnet system. The subject with a small magnet fixed on one leg ran closely down past the coils placed every 5m along the course. Two healthy members of the Japanese Antarctic Research Expedition who were well-trained skiers acted as subjects. Running speed was measured in three different postural conditions (a) standing, (b) egg-shaped, (c) starting in the egg-shaped posture and then standing erect in the latter half of the course. Velocity was measured throughout the course and the following results were obtained: velocities at the final section of the coils, which were placed 65m from the start point, were as follows for each postural condition: Subject KW; (a) standing, 7·6ms?1 (b) egg-shaped, 8·6ms?1 (c) egg-shaped followed by standing erect, 8·2ms?1. Subject B; (a) 7·8ms?1, (b) 8·9ms?1, (c) 8·4ms?1. The friction between the ski and snow was calculated as about 0·13 for all conditions. It was concluded that postural difference may have a considerable and clear-cut effect on running speed even when the skiing speed is rather low.  相似文献   

5.
Wu YS  Fan JT  Yu W 《Ergonomics》2011,54(3):301-313
Evaporative resistance and thermal insulation of clothing are important parameters in the design and engineering of thermal environments and functional clothing. Past work on the measurement of evaporative resistance of clothing was, however, limited to the standing posture with or without body motion. Information on the evaporative resistance of clothing when the wearer is in a sedentary or supine posture and how it is related to that when the wearer is in a standing posture is lacking. This paper presents original data on the effect of postures on the evaporative resistance of clothing, thermal insulation and permeability index, based on the measurements under three postures, viz. standing, sedentary and supine, using the sweating fabric manikin-Walter. Regression models are also established to relate the evaporative resistance and thermal insulation of clothing under sedentary and supine postures to those under the standing posture. The study further shows that the apparent evaporated resistances of standing and sedentary postures measured in the non-isothermal condition are much lower than those in the isothermal condition. The apparent evaporative resistances measured using the mass loss method are generally lower than those measured using the heat loss method due to moisture absorption or condensation within clothing. STATEMENT OF RELEVANCE: The thermal insulation and evaporative resistance values of clothing ensembles under different postures are essential data for the ergonomics design of thermal environments (e.g. indoors or a vehicle's interior environment) and functional clothing. They are also necessary for the prediction of thermal comfort or duration of exposure in different environmental conditions.  相似文献   

6.
Thirty-nine males and 18 females, in six groups, participated in six high altitude treks (each lasting 3–4 weeks and climbing up to 5500 m) in the Himalaya and Karakoram. Inverse relationships between mean overnight total insulation (sleeping bag plus clothing) and air temperature in tents were recorded for all treks. Average overnight thermal sensations varied little with air temperature as the subjects modified their clothing insulation to maintain thermal sensations warmer than ‘neutral’ for all treks. For combined treks, subjects adjusted their mean overnight total insulation up to 7 clo for thermal sensations of between 0 (‘neutral’) and +1 (‘slightly warm’) on average, measured on the standard seven-point thermal sensation scale developed for everyday low-altitude conditions. Very few subjects (3% of all daily responses, on average) reported ‘cool’ or ‘cold’ sensations. General tent discomfort increased with altitude suggesting that subjects interpreted tent comfort predominantly in terms of thermal outdoor conditions.  相似文献   

7.
The aim of this study was to design new functional work clothing for meat-cutters, paying particular attention to the metabolic requirements of the work and the thermal and general working conditions in slaughterhouses. On the basis of the results of the pilot study (review of the literature, questionnaires and interviews, work analysis, physiological measurements) different types of work clothing were designed for prolonged used during normal work in meat cutting. Physical material tests and measurements of thermal insulation values (l(cl)), and the follow-up of clothing maintenance were carried out. Further modifications and evaluations of work clothing were based on the opinions of meat-cutters and on the physiological trials in slaughterhouses. The final assembly of work clothing consists of three pieces (cotton/polyester): an apron, trousers with extra insulation in the lower back, and a work coat with extra insulation in the neck and shoulders, and at the wrists. The sleeves are protected against moisture by special textile material. The thermal insulation of this new set of work clothing together with long sleeved and legged underwear is 1.3 clo and it proved to be sufficient for thermal comfort in moderate work in an air temperature of 10 degrees C.  相似文献   

8.
Lee Y  Hong K  Hong SA 《Applied ergonomics》2007,38(3):349-355
Garment fit and resultant air volume is a crucial factor in thermal insulation, and yet, it has been difficult to quantify the air volume of clothing microclimate and relate it to the thermal insulation value just using the information on the size of clothing pattern without actual 3D volume measurement in wear condition. As earlier methods for the computation of air volume in clothing microclimate, vacuum over suit and circumference model have been used. However, these methods have inevitable disadvantages in terms of cost or accuracy due to the limitations of measurement equipment. In this paper, the phase-shifting moiré topography was introduced as one of the 3D scanning tools to measure the air volume of clothing microclimate quantitatively. The purpose of this research is to adopt a non-contact image scanning technology, phase-shifting moiré topography, to ascertain relationship between air volume and insulation value of layered clothing systems in wear situations where the 2D fabric creates new conditions in 3D spaces. The insulation of vests over shirts as a layered clothing system was measured with a thermal manikin in the environmental condition of 20 degrees C, 65% RH and air velocity of 0.79 m/s. As the pattern size increased, the insulation of the clothing system was increased. But beyond a certain limit, the insulation started to decrease due to convection and ventilation, which is more apparent when only the vest was worn over the torso of manikin. The relationship between clothing air volume and insulation was difficult to predict with a single vest due to the extreme openings which induced active ventilation. But when the vest was worn over the shirt, the effects of thickness of the fabrics on insulation were less pronounced compared with that of air volume. In conclusion, phase-shifting moiré topography was one of the efficient and accurate ways of quantifying air volume and its distribution across the clothing microclimate. It is also noted that air volume becomes more crucial factor in predicting thermal insulation when clothing is layered.  相似文献   

9.
Ho C  Fan J  Newton E  Au R 《Ergonomics》2011,54(4):403-410
This paper reports on an experimental investigation on the effect of added fullness and ventilation holes in T-shirt design on clothing comfort measured in terms of thermal insulation and moisture vapour resistance. Four T-shirts in four different sizes (S, M, L, XL) were cut under the traditional sizing method while another (F-1) was cut with specially added fullness to create a 'flared' drape. A thermal manikin 'Walter' was used to measure the thermal insulation and moisture vapour resistance of the T-shirts in a chamber with controlled temperature, relative humidity and air velocity. The tests included four conditions: manikin standing still in the no-wind and windy conditions and walking in the no-wind and windy condition. It was found that adding fullness in the T-shirt design (F-1) to create the 'flared' drape can significantly reduce the T-shirt's thermal insulation and moisture vapour resistance under walking or windy conditions. Heat and moisture transmission through the T-shirt can be further enhanced by creating small apertures on the front and back of the T-shirt with specially added fullness. STATEMENT OF RELEVANCE: The thermal comfort of the human body is one of the key issues in the study of ergonomics. When doing exercise, a human body will generate heat, which will eventually result in sweating. If heat and moisture are not released effectively from the body, heat stress may occur and the person's performance will be negatively affected. Therefore, contemporary athletic T-shirts are designed to improve the heat and moisture transfer from the wearer. Through special cutting, such athletic T-shirts can be designed to improve the ventilation of the wearer.  相似文献   

10.
《Ergonomics》2012,55(12):1581-1594
Abstract

A tight-fitting crewneck undergarment (U) and a loose-fitting shirt (S) were studied as part of a commonly used clothing ensemble (I101=0.22 m2KW?1). Ten clothed male subjects performed standardized packing work ([Vdot]O2= 0.761 min?1) at three climatic conditions, 20°C and V a= 0.45ms?1(0-30min),at 5°Cand V a= 0.39ms?1(30-60min) and at 5°C and V a=l.23ms?1(76-90min). From 60-75 min the subjects rested at 20°C. The physiological and subjective responses varied with the environment from slightly warm to cool. U resulted in warmer responses than S: torso and upper arm skin temperatures were higher at both 5°C and 20°C, evaporation rate was higher at 20°C, mean skin temperature was higher during work at 20°C, sweating tended to begin earlier and skin wettedness to be higher with U than with S. No differences were observed in core temperature, heart rates, and subjective thermal evaluations. It was concluded that a tight-fitting inner layer (U) compared to a loose-fitting one (S) allows for less cooling of the skin in both a cool and a slightly warm environment  相似文献   

11.
The effect of the appraisers on the estimation of the thermal insulation of clothing ensembles was investigated. Nine appraisers, four experienced and five inexperienced, estimated the total thermal insulation by summing the values for individual garments. Lists of individual garments worn by workers were given during thermal comfort measurements carried out in shops and stores during one winter and summer. The beginners estimated the thermal insulation as accurately as the experienced appraisers. There were, however, great individual differences, for which three main reasons were found. Interpolation between the insulation provided by two garments was insufficient, and the insulation of these garments should be checked in more precise tables. Classification of the garments into heavy, medium and light clothing items was not adequate, and garments not listed by the workers confused the estimation given by different appraisers. The effect of error in thermal insulation on the PMV index is negligible if more than one appraiser estimates the thermal insulation and the mean of the estimates is used.  相似文献   

12.
《Applied ergonomics》2014,45(2):300-307
The main objective of this study is to establish an approach for measuring the dry and evaporative heat dissipation cricket helmets. A range of cricket helmets has been tested using a sweating manikin within a controlled climatic chamber. The thermal manikin experiments were conducted in two stages, namely the (i) dry test and (ii) wet test. The ambient air temperature for the dry tests was controlled to ∼23 °C, and the mean skin temperatures averaged ∼35 °C. The thermal insulation value measured for the manikin with helmet ensemble ranged from 1.0 to 1.2 clo. The results showed that among the five cricket helmets, the Masuri helmet offered slightly more thermal insulation while the Elite helmet offered the least. However, under the dry laboratory conditions and with minimal air movement (air velocity = 0.08 ± 0.01 ms−1), small differences exist between the thermal resistance values for the tested helmets. The wet tests were conducted in an isothermal condition, with an ambient and skin mean temperatures averaged ∼35 °C, the evaporative resistance, Ret, varied between 36 and 60 m2 Pa W−1. These large variations in evaporative heat dissipation values are due to the presence of a thick layer of comfort lining in certain helmet designs. This finding suggests that the type and design of padding may influence the rate of evaporative heat dissipation from the head and face; hence the type of material and thickness of the padding is critical for the effectiveness of evaporative heat loss and comfort of the wearer. Issues for further investigations in field trials are discussed.  相似文献   

13.
Zhiying Cui  Yuenshing Wu 《Ergonomics》2016,59(8):999-1008
This paper reports on an experimental investigation on the effects of air gap, wind and walking motion on the thermal properties of traditional Arabian thawbs and Chinese cheongsams. Total thermal resistance (It) and vapour resistance (Re) were measured using the sweating fabric manikin – ‘Walter’, and the air gap volumes of the garments were determined by a 3D body scanner. The results showed the relative changes of It and Re of thawbs due to wind and walking motion are greater than those of cheongsams, which provided an explanation of why thawbs are preferred in extremely hot climate. It is further shown that thermal insulation and vapour resistance of thawbs increase with the air gap volume up to about 71,000 cm3 and then decrease gradually. Thawbs with higher air permeability have significantly lower evaporative resistance particularly under windy conditions demonstrating the advantage of air permeable fabrics in body cooling in hot environments.

Practitioner Summary: This paper aims to better understand the thermal insulation and vapour resistance of traditional Arabian thawbs and Chinese cheongsams, and the relationship between the thermal properties and their fit and design. The results of this study provide a scientific basis for designing ethnic clothing used in hot environments.  相似文献   


14.
The main objective of the present work is the assessment of the thermal insulation of clothing ensembles, both in static conditions and considering the effect of body movements. The different equations used to calculate the equivalent thermal resistance of the whole body, namely the serial, the global and the parallel methods, are considered and the results are presented and discussed for the basic, the effective and the total clothing insulations. The results show that the dynamic thermal insulation values are always lower than the corresponding static ones. The highest mean relative difference [(static-dynamic)/static] was obtained with the parallel method and the lowest with the serial. For Icl the mean relative differences varied from 0.5 to 13.4% with the serial method, from 5.6 to 14.6% with the global and from 7.2 to 17.7% with the parallel method. In addition, the dynamic tests presents the higher mean relative differences between the calculation methods. The results also show that the serial method always presents the higher values and the parallel method the lowest ones. The relative differences between the calculation methods {[(serial-global)/global] and [(parallel-global)/global]} were sometimes significant and associated to the non-uniform distribution of the clothing insulation. In fact, the ensembles with the highest thermal insulation values present the highest differences between the calculation methods.  相似文献   

15.
In this study, three methods were used to determine the thermal insulation values of different school clothing worn by 6 to 17 year old girls and boys in Kuwait classrooms for both summer and winter seasons. The different clothing ensembles' insulations were determined by 1: measurement using adult-sized versions of the clothing on thermal manikins, 2: estimations from adult clothing data obtained from the standards tables in ISO 9920 and ASHRAE 55, and 3: calculations using a regression equation from McCullough et al. (1985) that was adapted to accommodate children's sizes for ages 6-17 years. Values for the clothing area factor, f(cl), were also determined by measurement and by using a prediction equation from ISO 9920. Results in this study suggested that the clothing insulation values found from the measured and adapted data were similar to the adult's data in standards tables for the same summer and winter seasons. Further, the effect of the insulation values on the different scholars' age groups were investigated using the clothing temperature rating technique and compared to the scholars' comfort temperature found in recent field studies. Results showed that the temperature ratings of the clothing using the three methods described above are close and in agreement with the scholars' comfort temperature. Though estimated and measured f(cl) data differed, the impact on the temperature ratings was limited. An observed secular change in the children's heights and weights in the last few decades implies that, for adolescents, the children's body surface areas are similar to those of adults, making the use of adult clothing tables even more acceptable. In conclusion, this study gives some evidence to support the applicability of using adults' data in ASHRAE 55 and ISO 9920 standards to assess the thermal insulation values of different children's clothing ensembles, provided that careful selection of the garments, ensembles material and design takes place.  相似文献   

16.
《Ergonomics》2012,55(8):989-1005
Abstract

Using the trace gas diffusion method, the vapour resistance of three clothing ensembles (two permeable and one impermeable) was determined for four subjects, sitting, standing or walking at 0-3 and 09 m/s, combined with three wind speeds of <0-15, 0-7 and 41 m/s. Sitting increased vapour resistance by 12-36%, whereas walking and wind decreased the resistance by 72% and 89% when compared to standing with less than 0-15 m/s wind. Movement and wind interacted so that the higher the walking speed, the less additional effect of wind was observed.

Values of the permeability index Im were calculated. Wind and movement increased Im up to a factor three for the permeable and up to a factor six for the impermeable garments. However, using a different definition of Im(I'm.), based on the convective part of the heat transfer coefficient only, resulted in higher I'm values (compared to im) which remained constant with wind and movement. It was shown that with increasing wind and movement Im will increase and approach the value of  相似文献   

17.
Havenith G 《Ergonomics》2007,50(10):1689-1701
Data on metabolic rates (n = 81) and clothing insulation (n = 96) of school children and adolescents (A, primary school: age 9-10; B, primary school: age 10-11 year; C, junior vocational (technical) education: age 13-16 (lower level); D, same as C but at advanced level; and E, senior vocational (technical) education, advanced level: age 16-18) were collected (Diaferometer, Oxylog, Heart Rate derivation) during theory-, practical- and physical education- lessons. Clothing insulation was calculated from clothing weight, covered body surface area, and the number of clothing layers worn. Clothing insulation was found to be similar to that expected for adults in the same (winter) season, with minimal variation with age or school type (0.9 to 1.0 clo; 1.38 clo where coverall was worn), but more variation within groups (coefficient of variation 6-12%). Metabolic rate values (W.m(-2)) were lower than expected from adult data for similar activities, but are supported by other child data. The results of this study can be used to establish design criteria for school climate control systems or as general data on energy expenditure for children and adolescents. The results emphasize the need for specific child data and show the limited value of size-corrected adult data for use in children.  相似文献   

18.
《Ergonomics》2012,55(9):1859-1866
The objective of the present laboratory study was to analyse physiological responses of horizontal lifting tasks when they were performed in sitting and standing positions. Heart rate and blood pressure were used as indices of circulatory strain. Lifting tasks were performed under four lifting positions: sitting-forward lift, sitting-twist lift, standing-forward lift, and standing-twist lift. The weights of the loads were 3, 5 and 7 kg and the frequencies of handling were 1, 4 and 6 lifts/min. This study supports the idea that heart rate is a sensitive measure for evaluating the effects of seated horizontal lifting tasks. The lifting positions and workload (frequency × load × distance) are important parameters in the design of these types of tasks. It appears that within the experimental values examined in this study, a seated position could be recommended while performing horizontal lifting tasks at workloads ≤4·6 kg.m.min ?1;. The results are supported by smaller physiological responses.  相似文献   

19.
Aptel M 《Applied ergonomics》1988,19(4):301-305
Required Clothing Insulation (IREQ) is a new thermal index submitted to the International Organisation for Standardisation (ISO) for discussion. It is designed to prevent general body cooling and is based on an analysis of heat exchanges. The thermal clothing insulation actually worn (lcl) is estimated using a new method, also submitted to ISO.

IREQ of 54 workers exposed to artificial cold (air temperature between −30° C and +10° C) was compared with lcl actually worn by these workers. The results of the present study show that, on average, the workers choose accurately lcl they need if their IREQ is below and up to 1·5 clo. Moreover, these workers prefer to wear garments which provide them with thermal comfort. If IREQ of workers is higher than 1·5–2 clo (i e, workers exposed to −20° C), it is difficult for them to increase their thermal insulation with additional garments. Although their lcl is not sufficient, there is no risk of gradual body cooling because of their continuous time exposure (CTE) which is shorter than the calculated Duration Limited Exposure (DLE). On the other hand, Wind Chill Index (WCI), which is proposed to prevent local cooling, is better adapted to prevent cold injuries than physiological thermal strain; for example, impairment of manual dexterity cannot be prevented with this index.  相似文献   


20.
《Ergonomics》2012,55(4):620-633
Abstract

Six young, healthy male subjects performed a series of experiments in a climatic chamber in different environmental conditions wearing protective ventilated NBC clothing. Ambient temperature, TA, ranged from -20 to 35°C, relative humidity, RH, from 20 to 85%, and air velocity, VA, from 0·1 to 5·0 ms?1. In addition, thermal radiation, measured by the temperature of the globothermometer, TG, was artificially increased in some experiments. A total of 32 experiments were performed. The subject had to exercise on a bicycle ergometer at a mechanical power of 60 W for 120 min. Heart rate, HR, oxygen uptake, VO2, skin temperature, Tsk and rectal temperature, Tre, were measured during the experiments together with the temperature of the space between skin and garment, Tu. Sweat loss was determined as the difference of the body weight before and after the experiment. Tu was well correlated with the chamber environmental parameters. During heat exposure work duration began to decrease progressively from a Tu 30°C, reducing to 40 min at the highest thermal load. About the same value of Tu, marked the departure of HR, VO2, Tsk and Tre from the values measured during the same work load in neutral conditions. Also, during cold exposure at -20°C work duration was reduced below 1 h, but the limit appeared to be the cold at the extremities. From these findings it appears that Tu is a good indicator of the thermal load and is related to the environmental condition by the equation: Tu = 9·93 + 0·56 TA + 0·023 TG + 0·14 RH (T in °C, RH in %. For better comfort and performance Tu should be monitored whenever a subject has to work wearing an NBC garment and the ventilating system must be adequate to fulfil the needs imposed on the subject by an adverse environment, in particular a high relative humidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号