首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
外挂式多叶准直器对准直器散射因子的影响   总被引:1,自引:0,他引:1  
目的 用电离室测量外挂式多叶准直器 (MLC)对准直器散射因子 (Sc)的影响 ,并用双源模型对结果进行分析。方法 测量MLC形成的 2个不规则射野序列 ,并与等效方野的测量值进行了比较 ,应用双源模型得出MLC对Sc产生影响时叶片所处的位置公式。结果 当MLC叶片位置离中心足够近时 ,叶片将对准直器散射因子产生影响 ;产生影响时叶片位置计算值与测量结果相符。结论 基于双源模型的MLC位置公式较好地描述了当外挂式准直器 (MLC或铅块 )形成的射野小于公式给出值时 ,准直器散射因子将受其影响。  相似文献   

2.
目的 研究利用电子射野影像装置(electronic portal imaging device,EPID)检测容积调强旋转放疗(volumetric-modulated arc therapy,VMAT)执行过程中多叶准直器(multileaf collimator,MLC)到位精度的方法。方法 随机选取了8例鼻咽癌患者的放疗计划进行分析,通过二维电离室矩阵进行剂量学验证,得到剂量验证通过率。借助Heimann Imaging Software拍摄软件和医科达Synergy直线加速器机载EPID,获取VMAT计划执行过程中MLC的到位信息,通过梯度检测算法获取MLC实际位置,并与VMAT计划中规定的MLC位置进行比较,得到MLC的位置误差,计算计划通过率。结果 8例鼻咽癌患者的放疗计划在评价标准为3%/3 mm时,剂量验证通过率是(94.8±2.1)%;当叶片到位误差允许值为1 mm时,叶片验证的通过率是(91.1±4.0)%。结论 8例VMAT计划全部通过了剂量验证,但仍存在不同程度的叶片到位误差,因此只对VMAT计划进行剂量验证是不够的,对VMAT计划剂量的验证需要对MLC进行专门的质量控制。通过EPID进行MLC到位精度的检测能够提供更详细、更深入的质控信息,为VMAT技术的开展提供更多的保障。  相似文献   

3.
目的 探讨调强放疗计划优化时多叶准直器(MLC)角度因素对优化结果中子野数(滑窗模式下为控制点数)和机器跳数影响,以及由此对调强放疗实施效率的影响。方法 选择10例拟行调强放疗的靶区形状为长条状的患者CT图像,在MLC运行方向与靶区长轴垂直(横向)和平行(纵向)方向分别以静态子野调强方式和滑窗调强方式设计计划并进行优化,在保证靶区和危及器官受量相同情况下,分别比较静态子野调强模式和滑窗调强模式下两种准直器角度时计划子野数或控制点数和机器跳数差别。结果 MLC纵向方式较横向方式静态子野数平均增加52.8%,滑窗调强控制点数增加58.2%,机器跳数平均增加幅度分别为49.6%和61.9%,子野数或控制点数和机器跳数均不同(P=0.000)。结论 在MLC调强放疗计划优化中选择MLC运行方向垂直于靶区长轴,在不影响靶区和危及器官受量情况下,可明显减少子野数或控制点数和机器跳数、缩短治疗时间、提高治疗效率,具有一定的临床实用价值。  相似文献   

4.
调强放疗计划系统的剂量学特性测试方法   总被引:1,自引:1,他引:1  
目的建立治疗计划系统调强放疗(IMRT)功能的剂量学特性测试方法,以期确定系统计算IMRT照射野或计划的剂量准确性。方法多叶准直器(MLC)调强是IMRT的主要实现方式,针对MLC特点设计一组测试例,测试这些特点对IMRT射野剂量分布的影响。与传统铅门相比, MLC设计的特点和带来的影响包括:(1)MLC叶片末端可能采用弧形端面设计,引起叶片末端效应; (2)MLC叶片侧面采用凸凹槽咬合设计,引起凸凹槽效应;(3)MLC叶片厚度通常比铅门簿,因此对原射线的衰减有差别;(4)IMRT照射野多个子野叠加照射形成的剂量分布将体现前述三个特点的综合效果。结果所有测试例的绝对剂量误差都较小,只有1个>2%。除了T1b和在10 cm深度时的T2外,其他测试例在3%/3 mm时的通过率都>95%。T1b和在10 cm深度时的T2位置处的计算剂量都偏高。除了对MLC凸凹槽的模拟稍差之外,经调整后的机器模型可计算得到相对准确的剂量分布,模型的各个参数基本已是最优值。结论实验结果显示该方法可准确反映MLC的设计特点对剂量的独立影响和综合影响,设计的测试方法适合于计划系统IMRT功能的验收测试。  相似文献   

5.
目的 制定鼻咽癌调强放疗计划时,通过控制直线加速器二级准直器的位置及角度以达到更好地限制头颈部危及器官的受照剂量.方法 应用Eclipse计划系统针对10例鼻咽癌患者分别制定T1、T2模式调强放疗计划.T1模式采用0°、52°、106°、160°、212°、258°、308°方向射野,二级准直器位置及角度不做限制,设置优化参数进行剂量运算.T2模式保持射野方向和优化参数与T1相同,根据每个计划实际情况适当修正射野二级准直器位置和角度,然后进行剂量运算.通过剂量体积直方图比较两种模式下计划的计划靶体积和危及器官剂量分布.结果 T1、T2模式调强放疗计划的计划靶体积均满足剂量要求,适形指数分别为0.82、0.83(t=-0.25,P=0.815).危及器官中晶状体、眼球、视神经和角膜的最大剂量分别降低28.7%(t=4.80,P=0.000)、2.7%(t=2.99,P=0.021)、1. 4%(t=1.05,P=0.032)和30.5%(t=2.99,P=0.020),腮腺平均受量和V35增加0.6%和9.9%(t=-2.82,P=0.043;t=-2.05,P=0.038).结论 与T1模式相比,适当控制二级准直器的位置和角度能更好减少散射线及漏射线对眼球特别是晶状体的影响,但会略增加腮腺受量.  相似文献   

6.
[目的]研究加速器不同机架角时多叶准直器叶片重力对放疗剂量的影响。[方法]用MapCheck二维半导体矩阵进行测量,预选静态调强和动态调强中大小合适的单方向治疗野和机架角,保证精确摆位和测量相应平面剂量,用MapCheck剂量分析系统的γ(3mm,3%)分析方法对相应通过率进行定量分析。[结果]当加速器机头为0°时,不同机架角静态调强与机架角为0°时静态调强平均通过率相差2%以内,动态调强与机架角为0°时平均通过率相差更大,但误差都在5%以内,但当加速器机头为90°时不同机架角时静态调强和动态调强与机架角为0°时的平均通过率都比较相近,这时多叶准直器叶片重力对放疗剂量的影响最小。[结论]当加速器机头为0°时不同机架角多叶准直器叶片重力对放疗剂量确实有影响,但当机头为90°时不同机架角多叶准直器叶片重力对放疗影响大大减少。为了减少多叶准直器叶片重力对放疗剂量的影响也应对多叶准直器叶片做定期的维护和保养。  相似文献   

7.
目的对加速器小野的剂量学特性进行研究,以指导调强放疗在临床上的应用。方法计算西门子primusM加速器小野条件下的总散射因子并比较相对剂量分布的测量和计算结果。结果在小野测试中,当治疗计划系统计算精度优于0.2 cm时,>2 cm×2 cm射野的总散射因子的计算值误差<3%,所有射野的计算与测量的相对剂量分布均较为吻合,但<2 cm×2 cm的射野在边缘低剂量区有一定的偏差。结论对于治疗计划系统计算的小射野剂量分布的误差在调强计划设计上应加以考虑,多叶准直器的到位精度对小射野剂量影响不容忽视。  相似文献   

8.
目的 研究加速器机架旋转角度、机器跳数(MU)、准直器到位和多叶准直器(MLC)叶片到位等误差对容积旋转调强放疗(VMAT)计划剂量验证γ通过率的影响。方法 选取已行VMAT的直肠癌和宫颈癌各10例,分别引入加速器各参数运行误差。通过比较引入误差计划与临床计划的剂量验证γ通过率,分析各参数误差对γ通过率的影响及其敏感性。结果 评价指标取3%/3mm、3%/2mm和2%/2mm时,引入机架旋转误差、机器跳数误差和准直器到位误差后的直肠癌和宫颈癌计划相比临床计划的剂量验证γ通过率变化均<7.0%,引入两侧MLC叶片反向、相向、同向运动误差后,每毫米误差导致绝对剂量验证γ通过率变化分别<19.13%、18.53%、0.19%,19.87%、20.01%、0.42%和23.11%、23.45%、0.65%。结论 执行VMAT计划时,相比机架旋转角度误差、机器跳数误差、准直器到位误差和MLC叶片同向偏移误差,MLC叶片反向或相向运动误差对绝对剂量验证γ通过率的影响更加明显,评价指标取3%/3mm、3%/2mm和2%/2mm时绝对剂量验证γ通过率受加速器各参数误差影响依次递增。执行特定患者剂量验证时,应适当使用评价指标并以绝对剂量验证γ通过率为评估计算和测量剂量分布一致性的参考指标。  相似文献   

9.
目的 评价静态多叶准直器调强放疗剂量分布与剂量率的关系,为特定患者治疗时如何选择剂量率提供参考.方法 选取静态多叶准直器调强放疗(IMRT)的3例(前列腺癌、鼻咽癌和淋巴瘤)典型治疗计划,分别使用瓦里安600CD加速器和I'mRT Matrixx二维电离室阵列,在不同剂量率(100、300、600 MU/min)下比较验证通过率.在Pinnacle计划系统中把每例子野单独作为1个射野,形成CRT计划.使用OmniPro-I'mRT V1.6调强验证软件把每例计划测最数据中每个子野,与同一剂量率下的CRT计划测量数据进行对比;得到实际治疗中每个子野在射野中的权重,再导回计划系统得到不同剂量率下的模拟计划.采用剂量分布和剂量体积直方图评价模拟计划与原计划对靶区和正常组织照射剂量情况.结果 随剂量率增加调强验证通过率下降.3例病例模拟计划靶区的D_(max)、D_(main)、D_(mean)、D_(95)够均变大,靶区内高剂量区明显增加,95%等剂量线外扩.600 MU/min模拟计划中,鼻咽癌病例中GTV_(nd)的D_(95)比原计划增加5.33%,其V_(10)达到19.38%.危及器官受量同样增加.淋巴瘤病例中全肺V_(20)在原计划与模拟计划(100、300、600 MU/min)中依次为31.77%与32.11%、32.60%、33.26%,鼻咽癌病例中右腮腺V_(30)依次为48.75%与49.56%、51.65%、53.91%.结论 高剂量率下进行静态多叶准直器IMRT实际得到的剂量分布将偏离计划分布,靶区高剂量区和危及器官受量将增加.当原计划中危及器官受量与耐受量接近时,不宜使用高剂量率进行IMRT.  相似文献   

10.
目的 研究低熔点合金铅补偿器在临床调强放疗中的应用价值。方法 用计划系统输出射野强度分布文件(Dicom RT),通过测定低熔点合金铅衰减因子计算出Dicom RT文件对应射野中每个像素对应的加工深度,产生用于AUTIMO 3D数控切割机的控制文件,然后使用加工好的泡沫浇铸低熔点合金铅成型,产生调强放疗所需补偿器并通过MatriXX的质量控制测试系统对其检测。同时随机对比了 10例患者多叶准直器和低熔点合金铅补偿器调强放疗的测试结果。结果 治疗中心点剂量和面剂量显示使用低熔点合金铅补偿器调强放疗能产生和计划系统基本相同的剂量分布,误差在5%以内且临床可接受。与多叶准直器相比,低熔点合金铅补偿器调强放疗所需放疗时间少\[(4.44±0.39) min∶(5.71±0.57) min (t=10.82,P=0.000)\]、机器跳数少\[(462.5±65.8) MU∶(524.5±99.6) MU (t=3.14,P=0.012)\]。结论 铅补偿调强放疗技术相比于MLC的独特优势在于临床上有重要推广价值,为广大基层医院在低成本条件下开展精确放疗提供了一套可行方法。  相似文献   

11.
A manual multileaf collimator developed for telecobalt unit was motorized to accomplish the easy movement of the leaves. The required field shaping using MLC could be achieved by either using template or display. The beam characteristics were investigated and then compared with those of customized blocks. The maximum interleaf leakage and the percentage of transmission measured at the depth of maximum ionization (0.5cm) were found to be 2.7% and 2.4%, respectively. The field shaping performed by the MLC was verified using film dosimetry. The comparative study of treatment plans of 3DCRT and IMRT between (60)Co beam and 6 MV beams was carried out. This MLC could be used as a substitute for conventional blocks in static fields, there by eliminating the effort and cost of fabricating customized blocks, the need for storage space for blocks and other practical difficulties during the process of the block making. It is also demonstrated that if a provision for IMRT delivery with MLC for (60)Co is made, could be a cost effective alternative to IMRT with 6 MV beam.  相似文献   

12.
AIMS AND BACKGROUND: The performance characteristics of a commercial multileaf collimator (MLC) for intensity modulated radiation therapy (IMRT) and a comprehensive quality assurance program (QA) to be performed during the commissioning of the MLC were investigated. MATERIALS AND METHODS: The midleaf transmission and interleaf leakage, the in-plane penumbra and its in-plane/cross-plane variation, the cross-plane penumbra and its in-plane/cross-plane variation, and the leaf positional accuracy of a high-energy photon (6 MV) Sli Precise Elekta linear accelerator were measured. Kodak EDR2 Ready Pack film was used for MLC transmission measurement; for the other characterization measurements we used Kodak X-Omat XV2 Ready Pack film placed at 5 cm depth in a solid RW3 phantom. Each film was digitized with a laser scanning photodensitometer VXR-12 Plus using the Omni Pro-Accept 6.OA film dosimetry system and converted to dose by means of H&D curves. The dose calibration measurements were performed with a Farmer ionization chamber according to the guidelines of the IAEA Technical Report No. 277. RESULTS: The average midleaf transmission and interleaf leakage were 1.8% +/- 0.1% and 2.1% +/- 0.2%, respectively. The average value of the cross-plane penumbra was 5.4 mm +/- 0.3 mm with maximum variation less than 0.4 mm and 1.0 mm in the in-plane and cross-plane direction, respectively. The average value of the in-plane penumbra was 3.2 mm +/- 0.2 mm and 3.5 mm +/- 0.2 mm for the step side and groove side of the leaves, respectively. A dose profile perpendicular to the direction of the leaf travel passing through the central axis shows a tongue-and-groove effect of about 33%. The positional accuracy of the leaves was investigated according to AAPM Report No. 72 TG50; the deviation of the net optical density along all the match lines was less than +/- 20%. Moreover, the results obtained with a step field technique showed a positional accuracy of less than 1 mm. CONCLUSIONS: The results suggest the necessity of extensive knowledge of the MLC dosimetric characteristics for IMRT applications in order to allow physicists to study their influence on treatment delivery and to perform a comprehensive routine QA program of the investigated parameters.  相似文献   

13.
目的 初步评价铜补偿器IMRT技术的可行性和临床价值。方法 选取IMRT计划系统中10例肿瘤患者,其中鼻咽癌3例、食管癌4例、直肠癌3例。首先通过电离室测量6 MV射线在一组不同厚度铜板的衰减系数,拟合出厚度计算公式;然后将计划系统导出的计划文件转换为补偿器厚度矩阵,将其导入数控机床完成补偿器切割制作,最后在均匀体模上实施基于补偿器的IMRT计划。采用胶片测量平面剂量,与计划系统计算的平面剂量做3%/3 mm标准下的γ分析。配对t检验MLC计划和铜补偿器计划的机器跳数差异。结果 根据实际测量拟合出的公式准确计算出切割深度,利用计划的RTPLAN文件成功转换出数控机床所需切割文件。计划验证结果显示10例患者γ通过率最低为90.2%,最高为98.2%,均满足临床计划要求。铜补偿器IMRT计划的机器跳数低于MLC的IMRT计划(873.9∶975.1,P=0.005)。结论 基于铜补偿器的IMRT技术可以满足临床治疗的要求。  相似文献   

14.
Previously, an analytical dose calculation algorithm for MLC-based radiotherapy was developed and commissioned, which includes a detailed model of various MLC effects as a unique feature [1]. The algorithm was originally developed as an independent verification of the treatment planning system's dose calculation and it explicitly modeled spatial and depth dependent MLC effects such as interleaf transmission, the tongue-and-groove effect, rounded leaf ends, MLC scatter, beam hardening, and divergence of the beam, which in turn resulted in a gradual MLC transmission fall-off with increasing off-axis distance. Originally the algorithm was implemented in Mathematica? (Wolfram). To speed up the calculation time and to be able to calculate high resolution 2D dose distributions within a reasonable time frame (<2 s) the algorithm needs to be optimized and to be embedded in a user friendly environment.To achieve this goal, the dose calculation model is implemented in VisualBasic 6.0, which decreases the calculation time moderately. More importantly, the numerical algorithm for dose calculation is changed at two levels: the dose contributions are split into their x- and y-contributions and the calculation is aperture- rather than as originally point-based.Implementing these three major changes, the calculation time is reduced considerably without loosing accuracy. The time for a typical IMRT field with about 2500 calculation points decreased from 2387 seconds to 0.624 seconds (a factor of about 3800). The mean agreement of the optimized and the not optimized calculation algorithm at the isocenter for a fairly complex IMRT plan with 23 fields is better than 1% relative to the local dose at the measuring point.  相似文献   

15.
目的 探讨配备HD-MLC的Edge加速器Eclipse模型建立与测试。方法 利用Razor、CC13采集小野百分深度剂量、离轴曲线、输出因子并与标准数据比对。使用EBT3、EPID、 SRS1000&SRS1500测量MLC半影、穿射漏射、凹凸槽、到位准确性、DLG,并根据测试例γ通过率选出最佳DLG/透射率值。利用 FC65-G对规则野、IMRT、VMAT病例行点剂量验证。使用Octavius 4D及EBT3对测试例行面剂量验证。结果 实测PDD与标准数据一致。3、4 cm射野半影较标准值小,6 cm的较标准值大。所有方野左右边界、射野大小、射野中心偏差分布为-1.0~0.4 mm、0.2~1.7 mm、-0.3~1.9 mm、-0.1~0.8 mm。左、右MLC在不同位置处的半影平均值分别为(2.5±0.042)、(2.7±0.005) mm;MLC透射率分布为 0.009~0.016。测得的DLG、透射因子分别为0.1861 cm、0.0116,最佳DLG、透射因子分别为0.015 cm、0.014。除 1例位于低剂量区外,其余所有测试点剂量偏差均位于 ±3%内。IMRT面剂量验证局部、全局γ通过率分别为 79.81%~100%、96.3%~100%(3%/3 mm),VMAT病例上述通过率分别为 71.3%~98.9%、94.3%~99.8%。结论 本研究方法能准确地实施HD-MLC&Edge系统Eclipse模型建立与测试。  相似文献   

16.
The purpose of this study was to measure the multileaf collimator (MLC) transmission from the first Hi-Art II tomotherapy machine installed at the Advanced Center for Treatment, Research, and Education in Cancer (ACTREC). The MLC transmission was measured with an A1SL ion chamber and the radiographic extended dose range (EDR2) film in virtual water slabs at 1.5-cm depth with a source-to-surface distance of 85 cm. The MLC transmission was measured for 30 s with all leaves open and for 360 s with all leaves closed. The movable jaws were set to the calibration field size of 5 x 40 cm at isocenter. The MLC transmission was found to be 0.3% with the ion chamber and 0.32% with the film. Thus, the MLC transmission value was found well within the manufacturer tolerance of 0.5%. MLC can safely be used for the beam modulation during intensity-modulated radiotherapy (IMRT) to deliver accurate doses to the patients.  相似文献   

17.
目的 模拟机器跳数(MU)和多叶准直器(MLC)叶片位置在计划执行时可能产生的系统误差,检测并分析鼻咽癌静态IMRT和VMAT计划对上述误差的剂量学敏感度。方法 选取5例已行IMRT的鼻咽癌计划,在相同物理参数的基础上重新制定VMAT计划,修改两组计划的MU,引入1.25%、2.50%、5.00%系统误差;同时修改计划的MLC原始文件,引入0.25、0.50、1.00、1.50、2.00 mm系统误差,模拟治疗计划执行过程中可能出现的叶片不到位情况。其中MLC系统误差的运动方式为两侧MLC叶片朝同个方向运动和两侧MLC叶片朝相反方向运动(射野外扩或内收)。采用线性回归分析法计算并比较IMRT和VMAT计划相对于MU和MLC系统误差的剂量学敏感度差异。结果 随着MU系统误差增加,IMRT和VMAT计划的靶区和OAR受量呈线性增加,且满足R2=0.992~1(P<0.05);对于MLC的误差,IMRT和VMAT计划的靶区和OAR相应剂量学参数的偏移误差引起的敏感度最小,分别为-0.26%/mm和-0.65%/mm;其次是外扩误差4.87%/mm和8.68%/mm,最大的是内收误差-6.04%/mm和-9.88%/mm。此外,3种类型误差中VMAT计划由误差引起的剂量学敏感度大于IMRT计划。结论 MU和MLC的系统误差对鼻咽癌IMRT计划的剂量分布有显著影响,尤其是VMAT计划。做好加速器MLC的日常QA工作对更好、更精确地实施放疗计划有着重要的意义。  相似文献   

18.
PURPOSE: The conventional single-isocenter and half-beam (SIHB) technique for matching supraclavicular fields with head-and-neck (HN) intensity-modulated radiotherapy (IMRT) fields is subject to substantial dose inhomogeneities from imperfect accelerator jaw/MLC calibration. It also limits the isocenter location and restricts the useful field size for IMRT. We propose a dynamic field-matching technique to overcome these limitations. METHODS AND MATERIALS: The proposed dynamic field-matching technique makes use of wedge junctions for the abutment of supraclavicular and HN IMRT fields. The supraclavicular field was shaped with a multileaf collimator (MLC), which was orientated such that the leaves traveled along the superoinferior direction. The leaves that defined the superior field border moved continuously during treatment from 1.5 cm below to 1.5 cm above the conventional match line to generate a 3-cm-wide wedge-shaped junction. The HN IMRT fields were optimized by taking into account the dose contribution from the supraclavicular field to the junction area, which generates a complementary wedge to produce a smooth junction in the abutment region. This technique was evaluated on a polystyrene phantom and 10 HN cancer patients. Treatment plans were generated for the phantom and the 10 patients. Dose profiles across the abutment region were measured in the phantom on films. For patient plans, dose profiles that passed through the center of the neck lymph nodes were calculated using the proposed technique and the SIHB technique, and dose uniformity in the abutment region was compared. Field mismatches of +/- 1 mm and +/- 2 mm because of imperfect jaw/MLC calibration were simulated, and the resulting dose inhomogeneities were studied for the two techniques with film measurements and patient plans. Three-dimensional volumetric doses were analyzed, and equivalent uniform doses (EUD) were computed. The effect of field mismatches on EUD was compared for the two match techniques. RESULTS: For a perfect jaw/MLC calibration, dose profiles for the 10 patients in the 3-cm match zone had an average inhomogeneity range of -1.6% to +1.6% using the dynamic-matching technique and -3.7% to +3.8% according to the SIHB technique. Measurements showed that dose inhomogeneities that resulted from 1-mm and 2-mm jaw/MLC calibration errors were reduced from as large as 27% and 45% with the SIHB technique to less than 2% and 5.7% with the dynamic technique, respectively. For -1-mm, -2-mm, +1-mm, and +2-mm jaw/MLC calibration errors, respectively, treatment plans for the 10 patients yielded average dose inhomogeneities of -5.9%, -3.0%, +2.7%, and +5.8% with the dynamic technique as compared to -22.8%, -11.1%, +9.8%, and +22.1% with the SIHB technique. Calculation based on a dose-volume histogram (DVH) showed that the SIHB technique resulted in larger changes in EUD of the PTV in the junction area than did the dynamic technique. CONCLUSION: Compared with the conventional SIHB technique, the dynamic field-matching technique provides superior dose homogeneity in the abutment region between the supraclavicular and HN IMRT fields. The dynamic feathering mechanism substantially reduces dose inhomogeneities that result from imperfect jaw/MLC calibration. In addition, isocenter location in the dynamic field-matching technique can be chosen for reproducible patient setup and for adequate IMRT field size rather than being dictated by the match position. It also allows angling of the supraclavicular field to reduce the volume of healthy lung irradiated, which is impractical with the SIHB technique. In principle, this technique should be applicable to any treatment site that requires the abutment of static and intensity-modulated fields.  相似文献   

19.
目的 初步探讨利用TG119报告对容积旋转调强放疗(VMAT)计划进行评估的可行性。方法 选取6 MV和10 MV能量的X射线,针对TG119报告中的测试病例,在Eclipse治疗系统中依照TG119报告中的要求设计7或9个野的IMRT计划和双弧VMAT计划,采用电离室、MatriXX和Delta 4进行剂量验证,并将结果与TG119报告中多机构测试的结果进行对比。结果 IMRT和VMAT计划在系统中的剂量指标均达到了TG119报告中的要求。在靶区测量点和危及器官测量点,不同能量光子束的VMAT计划的点剂量误差为±2.55%,IMRT计划的点剂量误差为±1.85%。使用6 MV和10 MV能量的X射线时,IMRT计划的平均γ通过率(±3%/3 mm)为99.38%和99.53%,VMAT计划的平均γ通过率(±3%/3 mm)为99.32%和99.46%,复合射野的γ通过率均在98%以上。结论 6 MV和10 MV能量光子束的VMAT计划均满足TG119报告验证标准。TG119报告对VMAT技术的剂量学验证基准的确定有一定指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号