首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   11篇
数理化   139篇
  2020年   2篇
  2019年   4篇
  2018年   9篇
  2017年   5篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   10篇
  2012年   10篇
  2011年   27篇
  2010年   22篇
  2009年   10篇
  2008年   11篇
  2007年   5篇
  2006年   6篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
排序方式: 共有139条查询结果,搜索用时 734 毫秒
1.
Rapid and efficient preparation of 2-imidazolines and bis-imidazolines by reaction of ethylenediamine with nitriles in the presence of catalytic amounts of sulfur under ultrasonic irradiation is reported. The advantages of this system are short reaction times, high yields and the ability to carry out large scale reactions.  相似文献   
2.
Epoxides can be cleaved in a regio- and stereoselective manner under neutral conditions with alcohols and acetic acid in the presence of catalytic amounts of decatungstocerate(IV) ion, ([CeW10O36]8−), affording the corresponding β-alkoxy and β-acetoxy alcohols in high yields. In water, ring opening of epoxides occurs with this catalyst to produce the corresponding diols in good yields.  相似文献   
3.
Tetrahydropyranyl ethers derived from primary alcohols were directly and efficiently converted into the corresponding acetates and formates by the action of ethyl acetate, acetic acid, acetic anhydride, and ethyl formate in the presence of a catalytic amount of potassium dodecatungstocobaltate K5CoW12O40 · 3H2O. Tetrahydropyranyl ethers derived from secondary alcohols and phenols can also be transformed into the corresponding acetates with the use of acetic anhydride, but K5CoW12O40 · 3H2O was ineffective for esterification with ethyl acetate, acetic acid, and ethyl formate.__________From Zhurnal Organicheskoi Khimii, Vol. 41, No. 3, 2005, pp. 403–405.Original English Text Copyright © 2005 by Rafiee, Tangestaninejad, Habibi, Mohammadpoor-Baltork, Mirkhani.The original article was submitted in English.  相似文献   
4.
The new analogues of nifedipine, in which 2-nitrophenyl group at position 4 is replaced by phenylisoxazolyl substituent, were synthesized. The symmetrical dialkyl 1,4-dihydro-2,6-dimethyl-4-(5-phenylisoxazol-3-yl)pyridine-3,5-dicarboxylates were prepared by classical Hantzsch condensation, and the asymmetrical analogues were synthesized using a procedure reported by Dagnino that involved the condensation of alkyl acetoacetate with alkyl 3-aminocrotonate and 5-phenylisoxazole-3-carboxaldehyde. The structure of all compounds was confirmed by IR, 1H NMR and Mass spectra. In vitro calcium channel antagonist activities were evaluated as calcium channel antagonists using the high K+ concentration of guinea-pig ileum longitudinal smooth muscle (GPILSM) assay. These compounds exhibited moderate calcium antagonist activity (IC50 = 10?7 to 10? 5 M range) relative to the reference drug nifedipine (IC50 = 1.10 ± 0.40 × 10?8 M).  相似文献   
5.
The hydrodistilled oils from the aerial parts of Ferula latisecta and Mozaffariania insignis, which is endemic to Iran, were analyzed by GC and GC/MS. (Z)-Ocimenone (32.4%), (E)-ocimenone (20.3%), and cis-pinocarvone (11.4%) were the main components among the 22 constituents characterized in the oil of F. latisecta, representing 87.7% of the total components detected. Twenty-five compounds were identified in the oil of M. insignis, representing 99.0% of the total oil, with octyl acetate (41.1%), β-pinene (30.3%), and α-pinene (23.9%) as the main constituents. The essential oils were examined for their potential antimicrobial activities. Published in Khimiya Prirodnykh Soedinenii, No. 6, pp. 561–563, November–December, 2006.  相似文献   
6.
A new nano scale Cu‐MOF has been obtained via post‐synthetic metalation by immersing a Zn‐MOF as a template in DMF solutions of copper(II) salts. The Cu‐MOF serves as recyclable nano‐catalyst for the preparation of 5‐substituted 1H‐tetrazoles via [3 + 2] cycloaddition reaction of various nitriles and sodium azide in a green medium (PEG). The post‐synthetic metalated MOF were characterized by FT‐IR spectroscopy, powder X‐ray diffraction (PXRD), atomic absorption spectroscopy (AAS), and energy dispersive X‐ray spectroscopy (EDX) techniques. The morphology and size of the nano‐catalyst were determined by field emission scanning electron microscopy (FE‐SEM).  相似文献   
7.
8.
A novel heterogeneous nanocatalyst was established by supporting molybdenum (VI) on Zr6 nodes in the structure of the well‐known UiO‐66 metal–organic framework (MOF). The structure of the UiO‐66 before and after Mo (VI) immobilization was confirmed with XRD, DR‐FTIR and UV–vis spectroscopy, and the presence and amount of Mo (VI) was identified by X‐ray photoelectron spectroscopy and inductively coupled plasma atomic emission spectroscopy. TEM imaging confirmed the absence of Mo clusters on the MOF surface, while SEM confirmed that the appearance of the MOF has not changed upon immobilizing the Mo (VI) catalyst. BET adsorption measurements were used to confirm the porosity of the catalyst. The catalytic activity of this heterogeneous catalyst was investigated in oxidation of sulfides with H2O2 in acetonitrile and oxidative desulfurization of dibenzothiophene. Easy work up, convenient and steady reuse and high activity and selectivity are prominent properties of this new hybrid material.  相似文献   
9.
A novel, diastereoselective, one-pot synthesis of new bis-Betti bases via condensation of dihydroxynaphthalene, two equivalents of aryl aldehydes, and two equivalents of 3-amino-5-methylisoxazole is reported. Conversion into the adducts was almost quantitative without the use of solvent or catalyst. The reaction conditions are very simple and enable easy isolation of the product.  相似文献   
10.
Nanosilica sulfuric acid is found to be a new, powerful and reusable heterogeneous catalyst for the rapid synthesis of 3-hydroxyphthalans via condensation of aromatic aldehydes and 3-hydroxybenzyl alcohols under conventional heating and microwave irradiation. Scale-up preparation of these heterocycles is also carried out.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号