首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A heterogeneous catalyst was synthesized by immobilizing Mo(CO)3 in a UiO‐66 metal–organic framework. The benzene ring of the organic linker in UiO‐66 was modified via liquid‐phase deposition of molybdenum hexacarbonyl, Mo(CO)6, as starting precursor to form the (arene)Mo(CO)3 species inside the framework. The structure of this catalyst was characterized using X‐ray diffraction, and chemical integrity was confirmed using Fourier transform infrared and diffuse reflectance UV–visible spectroscopic methods. The metal content was analysed with inductively coupled plasma. Field emission scanning electron microscopy was used to measure particle size and N2 adsorption measurements to characterize the specific surface area. This catalytic system was efficiently applied for epoxidation of alkenes and oxidation of sulfides. The Mo‐containing metal–organic framework was reused several times without any appreciable loss of its efficiency.  相似文献   

2.
A Zr‐based metal–organic framework with bipyridine units (UiO‐67) has been utilized for the immobilization of catalytically active iron species via a post‐synthetic metalation method. UiO‐67 bipyridine MOF was synthesized through a simple solvothermal method and was shown to have a UiO‐type structure. Post‐synthetic metalation of UiO‐67 MOF was performed for the immobilization of the catalytically active FeCl3. FT‐IR and EDX element map suggested that FeCl3 is coordinately bonded to the UiO‐67 bipyridine framework. The synthesized UiO‐67‐FeCl3 catalyst was used for the aerobic oxidation of alcohols and benzylic compounds in the presence of molecular oxygen. In addition, the UiO‐67‐FeCl3 catalyst can be reused as a solid heterogeneous catalyst without compromising its activity and selectivity.  相似文献   

3.
Nitrones are key intermediates in organic synthesis and the pharmaceutical industry. The heterogeneous synthesis of nitrones with multifunctional catalysts is extremely attractive but rarely explored. Herein, we report ultrasmall platinum nanoclusters (PtNCs) encapsulated in amine‐functionalized Zr metal–organic framework (MOF), UiO‐66‐NH2 (Pt@UiO‐66‐NH2) as a multifunctional catalyst in the one‐pot tandem synthesis of nitrones. By virtue of the cooperative interplay among the selective hydrogenation activity provided by the ultrasmall PtNCs and Lewis acidity/basicity/nanoconfinement endowed by UiO‐66‐NH2, Pt@UiO‐66‐NH2 exhibits remarkable activity and selectivity, in comparison to Pt/carbon, Pt@UiO‐66, and Pd@UiO‐66‐NH2. Pt@UiO‐66‐NH2 also outperforms Pt nanoparticles supported on the external surface of the same MOF (Pt/UiO‐66‐NH2). To our knowledge, this work demonstrates the first examples of one‐pot synthesis of nitrones using recyclable multifunctional heterogeneous catalysts.  相似文献   

4.
A UiO‐66‐NCS MOF was formed by postsynthetic modification of UiO‐66‐NH2. The UiO‐66‐NCS MOFs displays a circa 20‐fold increase in activity against the chemical warfare agent simulant dimethyl‐4‐nitrophenyl phosphate (DMNP) compared to UiO‐66‐NH2, making it the most active MOF materials using a validated high‐throughput screening. The ?NCS functional groups provide reactive handles for postsynthetic polymerization of the MOFs into functional materials. These MOFs can be tethered to amine‐terminated polypropylene polymers (Jeffamines) through a facile room‐temperature synthesis with no byproducts. The MOFs are then crosslinked into a MOF–polythiourea (MOF–PTU) composite material, maintaining the catalytic properties of the MOF and the flexibility of the polymer. This MOF–PTU hybrid material was spray‐coated onto Nyco textile fibers, displaying excellent adhesion to the fiber surface. The spray‐coated fibers were screened for the degradation of DMNP and showed durable catalytic reactivity.  相似文献   

5.
The highly porous and stable metal–organic framework (MOF) UiO‐66 was altered using post‐synthetic modifications (PSMs). Prefunctionalization allowed the introduction of carbon double bonds into the framework through a four‐step synthesis from 2‐bromo‐1,4‐benzenedicarboxylic acid; the organic linker 2‐allyl‐1,4‐benzenedicarboxylic acid was obtained. The corresponding functionalized MOF (UiO‐66‐allyl) served as a platform for further PSMs. From UiO‐66‐allyl, epoxy, dibromide, thioether, diamine, and amino alcohol functionalities were synthesized. The abilities of these compounds to adsorb CO2 and N2 were compared, which revealed the structure–selectivity correlations. All synthesized MOFs showed profound thermal stability together with an increased ability for selective CO2 uptake and molecular gate functionalities at low temperatures.  相似文献   

6.
Metal–organic frameworks (MOFs) including the UiO‐66 series show potential application in the adsorption and conversion of CO2. Herein, we report the first tetravalent metal‐based metal–organic gels constructed from ZrIV and 2‐aminoterephthalic acid (H2BDC‐NH2). The ZrBDC‐NH2 gel materials are based on UiO‐66‐NH2 nanoparticles and were easily prepared under mild conditions (80 °C for 4.5 h). The ZrBDC‐NH2‐1:1‐0.2 gel material has a high surface area (up to 1040 m2 g?1) and showed outstanding performance in CO2 adsorption (by using the dried material) and conversion (by using the wet gel) arising from the combined advantages of the gel and the UiO‐66‐NH2 MOF. The ZrBDC‐NH2‐1:1‐0.2 dried material showed 38 % higher capture capacity for CO2 at 298 K than microcrystalline UiO‐66‐NH2. It showed high ideal adsorbed solution theory selectivity (71.6 at 298 K) for a CO2/N2 gas mixture (molar ratio 15:85). Furthermore, the ZrBDC‐NH2‐1:1‐0.2 gel showed activity as a heterogeneous catalyst in the chemical fixation of CO2 and an excellent catalytic performance was achieved for the cycloaddition of atmospheric pressure of CO2 to epoxides at 373 K. In addition, the gel catalyst could be reused over multiple cycles with no considerable loss of catalytic activity.  相似文献   

7.
The catalytic activity of UiO‐66@Fe3O4@SiO2 catalyst was investigated in the fixation of carbon dioxide with epoxides under mild conditions. In this manner, a facile magnetization of UiO‐66 was achieved simultaneously by simply mixing this metal–organic framework and silica‐coated Fe3O4 nanoparticles in solution under sonication. The prepared catalyst was characterized using Fourier transform infrared and UV–visible spectroscopies, X‐ray diffraction, transmission and field emission scanning electron microscopies, N2 adsorption and inductively coupled plasma atomic emission spectroscopy. This new heterogeneous catalyst was applied as a highly efficient catalyst in the coupling of carbon dioxide with epoxides at mild temperatures and pressures. Furthermore, it could be easily recovered with the assistance of an external magnetic field and reused three consecutive times without significant loss of activity and mass.  相似文献   

8.
Solid‐state crystallization achieves selective confinement of metal–organic framework (MOF) nanocrystals within mesoporous materials, thereby rendering active sites more accessible compared to the bulk‐MOF and enhancing the chemical and mechanical stability of MOF nanocrystals. (Zr)UiO‐66(NH2)/SiO2 hybrid materials were tested as efficient and reusable heterogeneous catalysts for the synthesis of steroid derivatives, outperforming the bulk (Zr)UiO‐66(NH2) MOF. A clear correlation between the catalytic activity of the dispersed Zr sites present in the confined MOF, and the loading of the mesoporous SiO2, is demonstrated for steroid transformations.  相似文献   

9.
We first studied the reactivity of H2O vapor in metal–organic frameworks (MOFs) with Pt nanocrystals (NCs) through the water–gas shift (WGS) reaction. A water‐stable MOF, UiO‐66, serves as a highly effective support material for the WGS reaction compared with ZrO2. The origin of the high catalytic performance was investigated using in situ IR spectroscopy. In addition, from a comparison of the catalytic activities of Pt on UiO‐66, where Pt NCs are located on the surface of UiO‐66 and Pt@UiO‐66, where Pt NCs are coated with UiO‐66, we found that the competitive effects of H2O condensation and diffusion in the UiO‐66 play important roles in the catalytic activity of Pt NCs. A thinner UiO‐66 coating further enhanced the WGS reaction activity of Pt NCs by minimizing the negative effect of slow H2O diffusion in UiO‐66.  相似文献   

10.
Improving the efficiency of electron–hole separation and charge‐carrier utilization plays a central role in photocatalysis. Herein, Pt nanoparticles of ca. 3 nm are incorporated inside or supported on a representative metal–organic framework (MOF), UiO‐66‐NH2, denoted as Pt@UiO‐66‐NH2 and Pt/UiO‐66‐NH2, respectively, for photocatalytic hydrogen production via water splitting. Compared with the pristine MOF, both Pt‐decorated MOF nanocomposites exhibit significantly improved yet distinctly different hydrogen‐production activities, highlighting that the photocatalytic efficiency strongly correlates with the Pt location relative to the MOF. The Pt@UiO‐66‐NH2 greatly shortens the electron‐transport distance, which favors the electron–hole separation and thereby yields much higher efficiency than Pt/UiO‐66‐NH2. The involved mechanism has been further unveiled by means of ultrafast transient absorption and photoluminescence spectroscopy.  相似文献   

11.
The typically stable Zr‐based metal–organic frameworks (MOFs) UiO‐66 and UiO‐66‐NH2 were treated with tetrafluoromethane (CF4) and hexafluoroethane (C2F6) plasmas. Through interactions between fluoride radicals from the perfluoroalkane plasma and the zirconium–oxygen bonds of the MOF, the resulting materials showed the development of mesoporosity, creating a hierarchical pore structure. It is anticipated that this strategy can be used as a post‐synthetic technique for developing hierarchical networks in a variety of MOFs.  相似文献   

12.
Post‐synthetic ligand exchange in the prototypical zirconium‐based metal–organic framework (MOF) UiO‐66 was investigated by in situ solution 1H NMR spectroscopy. Samples of UiO‐66 having different degrees of defectivity were exchanged using solutions of several terephthalic acid analogues in a range of conditions. Linker exchange only occurred in defect‐free UiO‐66, whereas monocarboxylates grafted at defect sites were found to be preferentially exchanged with respect to terephthalic acid over the whole range of conditions investigated. A 1:1 exchange ratio between the terephthalic acid analogue and modulator was observed, providing evidence that the defects had missing‐cluster nature. Ex situ characterisation of the MOF powders after exchange corroborated these findings and showed that the physical‐chemical properties of the MOF depend on whether the functionalisation occurs at defective sites or on the framework.  相似文献   

13.
The strategy to functionalize water‐stable metal–organic frameworks (MOFs) in order to improve their CO2 uptake capacities for efficient CO2 separation remains limited and challenging. We herein present an effective approach to functionalize a prominent water‐stable MOF, UiO‐66(Zr), by a combination of optimization and metalated‐ligand exchange. In particular, by systematic optimization, we have successfully obtained UiO‐66(Zr) of the highest BET surface area reported so far (1730 m2 g?1). Moreover, it shows a hybrid Type I/IV N2 isotherm at 77 K and a mesopore size of 3.9 nm for the first time. The UiO‐66 MOF underwent a metalated‐ligand‐exchange (MLE) process to yield a series of new UiO‐66‐type MOFs, among which UiO‐66‐(COONa)2‐EX and UiO‐66‐(COOLi)4‐EX MOFs have both enhanced CO2 working capacity and IAST CO2/N2 selectivity. Our approach has thus suggested an alternative design to achieve water‐stable MOFs with high crystallinity and gas uptake for efficient CO2 separation.  相似文献   

14.
The threat associated with chemical warfare agents (CWAs) motivates the development of new materials to provide enhanced protection with a reduced burden. Metal–organic frame‐works (MOFs) have recently been shown as highly effective catalysts for detoxifying CWAs, but challenges still remain for integrating MOFs into functional filter media and/or protective garments. Herein, we report a series of MOF–nanofiber kebab structures for fast degradation of CWAs. We found TiO2 coatings deposited via atomic layer deposition (ALD) onto polyamide‐6 nanofibers enable the formation of conformal Zr‐based MOF thin films including UiO‐66, UiO‐66‐NH2, and UiO‐67. Cross‐sectional TEM images show that these MOF crystals nucleate and grow directly on and around the nanofibers, with strong attachment to the substrates. These MOF‐functionalized nanofibers exhibit excellent reactivity for detoxifying CWAs. The half‐lives of a CWA simulant compound and nerve agent soman (GD) are as short as 7.3 min and 2.3 min, respectively. These results therefore provide the earliest report of MOF–nanofiber textile composites capable of ultra‐fast degradation of CWAs.  相似文献   

15.
Herein, a novel sensor (TPE‐UiO‐66) was designed via anchoring monodentate tetraphenylethylene (TPE) onto UiO‐66 framework. The combination of the distinct aggregation‐induced emission (AIE) of TPE and the easy replacement of monodentate linker by guest phosphate, makes TPE‐UiO‐66 an ideal platform for sensing HPO42–. Experimental results indicate that TPE‐UiO‐66 can selectively sense HPO42– from other common anions. The limit of detection (LOD) can reach to 5.56 μmol·L–1 and more importantly, TPE‐UiO‐66 also exhibits an ultra‐fast equilibrium response of 2 min, far faster than those of other sensors especially for UiO‐66‐NH2. The combination of experimental analysis and density functional theory (DFT) calculations demonstrates that the high selectivity, high sensitivity and fast response of HPO42– detection by TPE‐UiO‐66 can be attributed to the stronger coordination interactions of HPO42– with Zr‐O cluster of UiO‐66 than that of TPE molecule. This study not only provides a potential probe for phosphate, but also represents a novel strategy to design stimuli‐responsive fluorescent MOF‐based sensors via using monodentate AIEgens.  相似文献   

16.
Porous metal‐organic frameworks (MOFs) loading metal nanoparticles to form a composite photocatalyst demonstrated unique advantages. Modification of the electron donating group on the aromatic linkers of MOFs could increase the absorption range of light, thereby increasing the photocatalytic activity. In this study, we prepared a composite photocatalyst using a stable NH2‐functionalized MOF (UiO‐66‐NH2) to load semiconductor Ag/AgBr nanoparticles, and the resultant composites have intense optical absorption throughout visible light range. The greatly enhanced optical absorption and the unique hetero‐junction between Ag/AgBr and UiO‐66‐NH2 render efficient separation and utilization of photogenerated electron‐hole pairs. Therefore, Ag/AgBr@UiO‐66‐NH2 showed much more excellent photocatalytic activity, compared with unmodified UiO‐66 loading Ag/AgBr (Ag/AgBr@UiO‐66) and reported AgX@MOF catalysts. Moreover, the composite photocatalysts showed excellent stability during cycling experiment.  相似文献   

17.
In this work, we have synthesized nanocomposites made up of a metal–organic framework (MOF) and conducting polymers by polymerization of specialty monomers such as pyrrole (Py) and 3,4‐ethylenedioxythiophene (EDOT) in the voids of a stable and biporous Zr‐based MOF ( UiO‐66 ). FTIR and Raman data confirmed the presence of polypyrrole ( PPy ) and poly3,4‐ethylenedioxythiophene ( PEDOT ) in UiO‐66‐PPy and UiO‐66‐PEDOT nanocomposites, respectively, and PXRD data revealed successful retention of the structure of the MOF. HRTEM images showed successful incorporation of polymer fibers inside the voids of the framework. Owing to the intrinsic biporosity of UiO‐66 , polymer chains were observed to selectively occupy only one of the voids. This resulted in a remarkable enhancement (million‐fold) of the electrical conductivity while the nanocomposites retain 60–70 % of the porosity of the original MOF. These semiconducting yet significantly porous MOF nanocomposite systems exhibited ultralow thermal conductivity. Enhanced electrical conductivity with lowered thermal conductivity could qualify such MOF nanocomposites for thermoelectric applications.  相似文献   

18.
We transformed the hydrophilic metal–organic framework (MOF) UiO‐67 into hydrophobic UiO‐67‐R s (R=alkyl) by introducing alkyl chains into organic linkers, which not only protected hydrophilic Zr6O8 clusters to make the MOF interspace superoleophilic, but also led to a rough crystal surface beneficial for superhydrophobicity. The UiO‐67‐R s displayed high acid, base, and water stability, and long alkyl chains offered better hydrophobicity. Good hydrophobicity/oleophilicity were also possible with mixed‐ligand MOFs containing metal‐binding ligands. Thus, a (super)hydrophobic MOF catalyst loaded with Pd centers efficiently catalyzed Sonogashira reactions in water at ambient temperature. Studies of the hydrophobic effects of the coordination interspace and the outer surface suggest a simple de novo strategy for the synthesis of superhydrophobic MOFs that combine surface roughness and low surface energy. Such MOFs have potential for environmentally friendly catalysis and water purification.  相似文献   

19.
A density functional theory (DFT) approach was used to predict the thermodynamic energy barriers of the oxygen evolution reaction (OER) for three functionalized Metal‐organic Frameworks (MOFs). A UiO‐66(Zr) MOF design was selected for this study that incorporates three linker designs, a 1,4‐benzenedicarboxylate (BDC), BDC functionalized with an amino group (BDC + NH2), and BDC functionalized with nitro group (BDC + NO2). The study found several key differences between homogeneous planar catalyst thermodynamics and MOF‐based thermodynamics, the most significant being the non‐unique or heterogeneity of reaction sites. Additionally, the functionalization of the MOF was found to significantly influence the hydroperoxyl binding energy, which proves to be the largest hurdle for both oxide and MOF‐based catalyst. Both of these findings provide evidence that many of the limitations precluding planar homogeneous catalysts can be surpassed with a MOF‐based catalyst. The BDC + NH2 proved to be the best performing catalyst with a predicted over‐potential for spontaneous OER evolution to be 3.03eV. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
Metal–organic framework (MOF) UiO‐66 thin films are solvothermally grown on conducting substrates. The as‐synthesized MOF thin films are subsequently dried by a supercritical process or treated with polydimethylsiloxane (PDMS). The obtained UiO‐66 thin films show excellent molecular sieving capability as confirmed by the electrochemical studies for redox‐active species with different sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号