首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用高质量高温高压单晶金刚石衬底,通过等离子体环境净化的方法获得高纯、低缺陷密度金刚石材料,有望应用于医疗、核、宇宙射线等辐射探测器.采用微波化学气相沉积方法成功外延生长出了8 mm×8 mm的高质量单晶金刚石材料.晶体内无明显的应力集中区,X射线摇摆曲线(004)峰半高宽0.008°,PL光谱中未见与氮相关杂质,基于电子顺磁共振测试孤氮杂质含量为23ppb.  相似文献   

2.
突破高质量、高效金刚石掺杂技术是实现高性能金刚石功率电子器件的前提。本文利用微波等离子体化学气相沉积(MPCVD)法,以三甲基硼为掺杂源,制备出表面粗糙度0.35 nm,XRD(004)摇摆曲线半峰全宽28.4 arcsec,拉曼光谱半峰全宽3.05 cm-1的高质量硼掺杂单晶金刚石。通过改变气体组分中硼元素的含量,实现了1016~1020 cm-3的p型金刚石可控掺杂工艺。随后,研究了硼碳比、生长温度、甲烷浓度等工艺条件对p型金刚石电学特性的影响,结果表明:在硼碳比20×10-6、生长温度1 100 ℃、甲烷浓度8%、腔压160 mbar(1 mbar=100 Pa)时p型金刚石迁移率达到207 cm2/(V·s)。通过加氧生长可以提升硼掺杂金刚石结晶质量,降低杂质散射。当氧气浓度为0.8%时,样品空穴迁移率提升至 614 cm2/(V·s)。  相似文献   

3.
王心洋  曹光宇  黄翀 《人工晶体学报》2020,49(10):1896-1903
微波等离子体化学气相沉积(MPCVD)法产生的等离子体密度高,材料外延生长过程可控性好且洁净度高,是制备高质量金刚石膜的重要方法.基于谐振腔理论和三维全波电磁场仿真,对MPCVD设备微波系统中谐振腔、模式转换器、样品托等影响微波传输效率及电场分布形态的部件进行设计和优化,并通过对微波传输系统关键参量的测试和监控,研究系统调试变量对金刚石外延生长的影响.基于自研的MPCVD设备,实现较高品质金刚石膜的合成,金刚石有效生长区域为?50 mm圆面,外延生长速度10~25μm/h,单晶样品的表征结果显示合成的金刚石透光率接近理论值,材料的结晶程度良好,氮、硅等杂质含量较低.  相似文献   

4.
采用微波等离子体化学气相沉积(MPCVD)技术制备的大尺寸、高质量单晶金刚石材料具备卓越的物理化学性能,在珠宝、电子、核与射线探测等消费品、工业和国防科技领域极具应用前景.研究发现在化学气相沉积单晶金刚石生长过程中,在衬底与外延层之间,以及生长中途停止-继续生长的生长层之间出现明显的界面区.本文采用偏光显微镜、拉曼光谱、荧光光谱(PL)等手段对界面区域进行了测试分析,界面区在偏光显微镜下表现出因应力导致的亮区,且荧光光谱(PL)及其线扫描显示该区域的NV色心含量远高于衬底及其前后外延层,表明该界面区具有较高的缺陷和杂质含量.结果表明在生长高品质单晶金刚石初期就应当采取一定手段进行品质调控,并尽量在一个生长周期内完成制备.  相似文献   

5.
王艳丰  王宏兴 《人工晶体学报》2020,49(11):2139-2152
本综述分析了微波等离子化学气相沉积(MPCVD)单晶金刚石生长及其电子器件近年来的研究进展,并对其进行展望.详细介绍了金刚石宽禁带半导体特性、生长原理、生长设备、衬底处理.研究了影响MPCVD单晶金刚石生长的关键因素,为获得最优生长条件提供指导.分析了横向外延、拼接生长、三维生长等关键性生长技术,逐步提高单晶金刚石的质量和面积.在金刚石掺杂的研究中,详细介绍了n型和p型掺杂的研究进展.通过对金刚石肖特基二极管、氢终端金刚石场效应晶体管、紫外探测器的研究,展现了金刚石在电子器件领域的成果和进展.最后总结了MPCVD单晶金刚石生长及其电子应用过程中面临的挑战,展望了金刚石在电子器件领域的巨大应用前景.  相似文献   

6.
介绍了自行研制的环形天线-椭球谐振腔式高功率MPCVD装置的结构特点,展示并研究了新装置在高功率条件下的放电特性.在10.5 kW的高微波输入功率下成功制备了直径50 mm,厚度接近1 mm的高品质自支撑金刚石膜.在真空泄漏速率约2.5 ×10-6 Pa·m3/s的条件下金刚石膜的生长速率达到6μm/h,金刚石膜厚度偏差小于±2.1;.抛光后的金刚石膜红外透过率在6.5~25μm范围内接近71;;紫外透过率在270 nm处超过50;,金刚石膜样品的光学吸收边约为225 nm;通过紫外吸收光谱计算的金刚石膜样品中的氮杂质含量约为1.5 ppm;金刚石膜的拉曼半峰宽小于1.8 cm-1.  相似文献   

7.
人造金刚石作为一种高效的热管理衬底,在宽禁带半导体电子器件领域具有广泛的应用前景。然而微波等离子体化学气相沉积(MPCVD)法外延金刚石单晶的生长速率慢,表面粗糙度高,难以满足半导体器件的衬底需求。对此,本文采用MPCVD法制备金刚石单晶薄膜,通过分阶段生长监控样品的生长速率,结合显微镜照片和AFM表征样品的表面形貌和表面粗糙度,根据拉曼光谱和XRD分析外延薄膜的晶体质量,最终采用高/低甲烷浓度的两步法外延工艺,实现了金刚石单晶薄膜的高速外延,生长速率达到20 μm/h,同时获得了较为平整的表面形貌。本文所研究的甲烷调制两步法外延工艺能够起到表面形貌优化的作用,有利于在后续的相关器件研发中提供平整的金刚石衬底,推动高功率电子器件的发展。  相似文献   

8.
本文研究了在反应气体中引入不同浓度的CO2对微波等离子体化学气相沉积(MPCVD)法同质外延生长单晶金刚石内应力的影响,并对其作用机理进行了分析。研究发现,随着CO2浓度增加,单晶金刚石内应力逐渐减小,这是由于添加的CO2提供了含氧基团,可以有效刻蚀金刚石生长过程中的非金刚石碳,并能够降低金刚石中杂质的含量,从而避免晶格畸变,减少生长缺陷,并最终表现为单晶金刚石内应力的减小,其中金刚石内应力以压应力的形式呈现。此外反应气体中加入CO2可以降低单晶金刚石的生长速率和沉积温度,且在合适的碳氢氧原子比(5∶112∶4)下能够得到杂质少、结晶度高的单晶金刚石。  相似文献   

9.
杜园园  姜维春  陈晓  雒涛 《人工晶体学报》2021,50(10):1892-1899
碲锰镉(CdMnTe)作为性能优异的室温核辐射探测器材料,可用于环境监测和工业无损检测领域。本文中采用Te溶剂Bridgman法生长In掺杂Cd0.9Mn0.1Te晶体,制备成10 mm×10 mm×2 mm大小的室温单平面探测器,研究了该探测器对241Am@59.5 keV γ射线源的能谱响应。通过表征红外透过率、电阻率以及探测器能谱响应等参数,综合评定了探测器用CdMnTe晶体的质量、电学和探测器性能。结果表明,晶片的红外透过率均在55%以上,最好可达到60%。采用湿法钝化,100 V偏压下的漏电流由钝化前的9.48 nA降为钝化后的7.90 nA,钝化后的电阻率为2.832×1010 Ω·cm。在-400 V反向偏压下,CdMnTe探测器对241Am@59.5 keV γ射线源的能量分辨率在钝化前后分别为13.53%和12.51%,钝化后的电子迁移率寿命积为1.049×10-3 cm2/V。研究了探测器的能量分辨率随电压的变化特性,当偏压≤400 V时,探测器的能量分辨率主要由载流子的收集效率决定,而当偏压>400 V时,能量分辨率由漏电流决定。本文研究结果表明,Te溶剂Bridgman法生长的CdMnTe晶体质量较好,电阻率和电子迁移率寿命积满足探测器制备需求。  相似文献   

10.
根据小角散射原位加载测试的应用需求,采用自行研制的2.45 GHz/6 kW穹顶式微波等离子体化学气相沉积(MPCVD)装置进行高质量单晶金刚石窗口的制备,对晶托结构进行改进,并系统研究了沉积温度对单晶金刚石生长速率、表面形貌、结晶质量、X射线透过率的影响.实验结果表明,新型晶托结构使籽晶表面温度分布均匀,有利于提升单晶金刚石结晶质量;沉积温度1000℃下制备单晶金刚石样品表面形貌、拉曼曲线半峰宽、摇摆曲线半峰宽、X射线透过率均优于其它温度的样品,并最终在该温度下制备出Φ7 ×0.5 mm2的单晶金刚石窗口.经测试,样品生长速率可达11.6 μm/h,厚度偏差小于±2;,其Raman半峰宽为2.08 cm-1,XRD摇摆曲线半峰宽为28arcsec,PL谱中未出现与氮相关的杂质峰,X射线透过率超过80;且窗口耐压达到27 MPa,所有性能均满足小角散射原位加载测试的应用需求.  相似文献   

11.
本文通过高分辨X射线衍射(HRXRD)、激光拉曼光谱(Raman)、晶格畸变检测等测试分析方法对多组高温高压(HTHP) Ⅰb、HTHP Ⅱa和化学气相沉积(CVD)型(100)面金刚石单晶样品进行对比研究。HRXRD和Raman的检测结果均表明HTHP Ⅱa型金刚石单晶的结晶质量接近天然金刚石,其XRD摇摆曲线半峰全宽和Raman半峰全宽分别为0.015°~0.018° 和1.45~1.85 cm-1。晶格畸变检测仪的检测结果表明,HTHP Ⅱa型金刚石单晶的应力分布主要有两种:一种几乎无明显应力分布,另一种沿<110>方向呈对称的放射状分布,其他区域无晶格畸变。HTHP Ⅰb和CVD型金刚石单晶应力分布均相对分散,晶格畸变复杂,与其HRXRD和Raman的检测结果相符。进一步利用等离子体刻蚀法对三种类型金刚石单晶(100)面位错缺陷进行对比分析,结果表明,HTHP Ⅱa型金刚石位错密度为三者中最低,仅为1×103 cm-2。本研究为制备高质量大尺寸CVD金刚石单晶的衬底选择提供了实验依据。  相似文献   

12.
采用微波等离子体化学气相沉积(MPCVD)技术,通过改变气源中的氮含量,得到不同结晶质量的单晶金刚石,通过激光切割以及抛光控制样品尺寸为5 mm×5 mm×0.5 mm,然后对样品进行表面氢化处理并研制了金刚石射频器件,系统研究了氮含量对金刚石材料晶体质量和金刚石射频器件性能的影响。随着氮含量的增加,虽然单晶金刚石生长速率有所增加,但是其拉曼半峰全宽(FWHM)、XRD摇摆曲线半峰全宽也逐渐增加,光致发光光谱中对应的NV缺陷逐渐增多,晶体结晶质量逐渐变差,不仅导致沟道载流子的迁移率出现退化,而且也使金刚石射频器件出现了严重的电流崩塌和性能退化问题。通过降低氮浓度,提升材料的结晶质量,沟道载流子迁移率得到显著提升,金刚石射频器件的电流崩塌得到有效抑制,电流增益截止频率fT和功率增益截止频率fmax分别从17 GHz和22 GHz大幅度提升至32 GHz和53 GHz。  相似文献   

13.
在自主研发的小功率微波等离子体化学气相沉积(MPCVD)装置上利用高温高压(HPHT)单晶金刚石片为衬底进行了金刚石同质外延生长的研究.研究了甲烷浓度、工作气压对金刚石生长速率的影响.测量了金刚石外延 生长过程中等离子体的发射光谱,利用扫描电子显微镜(SEM)和数码相机对生长前后金刚石的形貌进行了表征,利用激光拉曼光谱对金刚石的质量进行了分析.结果表明:一定程度内,适当升高工作气压和甲烷浓度能够有效提高金刚石的生长速率;在外延生长过程会产生过多的丘状体,导致许多金刚石颗粒的产生,影响其生长时间和质量,通过生长、刻蚀相结合的方法能够有效延长生长时间,改善生长形貌;外延生长出的金刚石的激光拉曼图谱中金刚石1332 cm-1特征峰明显、尖锐,荧光背底低,非金刚石相特征峰较低.  相似文献   

14.
大尺寸单晶金刚石薄膜的外延生长   总被引:1,自引:0,他引:1       下载免费PDF全文
用电子回旋共振等离子体增强的化学汽相沉积法, 在单晶硅衬底上外延生长出了近于100μm2的单晶金刚石薄膜.使用的原料气体是高纯的氢气和甲烷,生长前没有对衬底做划痕和研磨等预处理.生长中是把衬底放在ECR共振区,并施加了射频负偏压.研究证实,在单晶金刚石薄膜的外延中,硅衬底表面形成高质量结晶的β-SiC过渡层是外延生长金刚石单晶的关键条件;而射频负偏压对于β-SiC过渡层的形成是致关重要的条件.  相似文献   

15.
采用非循环直流喷射(直喷式)直流电弧等离子化学气相沉积法,在Ar/H2/CH4气氛下,成功制备了金刚石单晶外延层.试验采用的是3 mm×3 mm×1.2 mm的高温高压Ib型金刚石单晶衬底.研究了不同衬底温度和甲烷浓度对金刚石单晶外延层的形貌,速率和晶体质量的影响.采用光学显微镜,激光共聚焦表征了样品的形貌,利用千分尺测量其生长速率,利用Raman表征其晶体质量,采用OES诊断Ar/H2/CH4等离子气氛下C2、CH与Hβ的相对浓度.研究表明,温度和甲烷浓度对单晶刚石形貌和质量产生了明显的影响.在衬底为温度980℃,甲烷浓度在1.5;的条件下,生长速率达到了36 μm/h,并且晶体质量较好(半高宽仅为1.88 cm-1).同时发现生长参数对金刚石单晶外延层的生长模式有着显著地影响.  相似文献   

16.
采用自主设计改造的温梯炉,成功生长了不同浓度Ho3+、Y3+掺杂的CaF2及SrxCa1-xF2晶体,晶体尺寸约为ϕ15 mm×55 mm,生长周期约为6 d,能够实现7种不同浓度晶体的同步生长,并选取其中的4%(原子数分数)Ho,4%Y∶CaF2晶体进行分析,吸收测试表明,该晶体448 nm和643 nm处吸收峰的吸收截面分别是1.13×10-20 cm2和0.84×10-20 cm2, J-O理论分析得到了晶场强度参数Ωt(t=2、4、6)、辐射跃迁几率、荧光分支比和辐射寿命。在448 nm氙灯激发下,经计算得到该晶体在546 nm、650 nm 和752 nm处的发射截面分别为10.450×10-21 cm2、8.737×10-21 cm2和5.965×10-21 cm2,测得5F45F5能级的寿命分别为33.5 μs和17.7 μs。在640 nm LD泵浦激发下,经计算得到该晶体2 031 nm处发射截面为5.375×10-21 cm2,2 847 nm处发射截面为10.356×10-21 cm2,测得5I75I6 能级的寿命分别为4.37 ms 和1.85 ms。以上结果表明,多孔坩埚温梯法能够大大提高激光晶体稀土离子掺杂浓度筛选的效率,加快新型激光晶体材料的研发速度。  相似文献   

17.
利用热丝化学气相沉积法(HFCVD)在碳化硅基底上制备金刚石薄膜,采用场发射扫描电子显微镜、拉曼光谱仪、原子力显微镜研究了在不同甲烷浓度条件下制备的金刚石薄膜表面形貌及物相组成,在干摩擦条件下通过往复式摩擦磨损实验测试并计算了已制备金刚石薄膜的摩擦系数和磨损率,结合物相分析及摩擦磨损实验结果分析了甲烷浓度的改变对金刚石薄膜摩擦磨损性能的影响。结果表明,由于甲烷气体含量的升高,金刚石薄膜结晶质量下降,薄膜由微米晶向纳米晶转变。摩擦磨损实验结果显示:3%甲烷浓度条件下制备的金刚石薄膜耐磨性较好,磨损率为2.2×10-7 mm3/mN;5%甲烷浓度条件下制备的金刚石薄膜摩擦系数最低(0.032),磨损率为5.7×10-7 mm3/mN,制备的金刚石薄膜的耐磨损性能相比于碳化硅基底(磨损率为9.89×10-5 mm3/mN)提升了两个数量级,显著提高了碳化硅基底的耐磨性。  相似文献   

18.
4H碳化硅(4H-SiC)单晶具有禁带宽度大、载流子迁移率高、热导率高和稳定性良好等优异特性,在高功率电力电子、射频/微波电子和量子信息等领域具有广阔的应用前景。经过多年的发展,6英寸(1英寸=2.54 cm)4H-SiC单晶衬底和同质外延薄膜已得到了产业化应用。然而,4H-SiC单晶中的总位错密度仍高达103~104 cm-2,阻碍了4H-SiC单晶潜力的充分发挥。本文介绍了4H-SiC单晶中位错的主要类型,重点讲述4H-SiC单晶生长、衬底晶圆加工以及同质外延过程中位错的产生、转变和湮灭机理,并概述4H-SiC单晶中位错的表征方法,最后讲述了位错对4H-SiC单晶衬底和外延薄膜的性质,以及4H-SiC基功率器件性质的影响。  相似文献   

19.
本文以高纯Lu2O3、Er2O3为原料,使用自主设计、制造的自动等径导模炉,采用导模法(EFG)生长了φ25 mm×20 mm的7.82%(原子数分数)Er:Lu2O3单晶,分凝系数为0.92,并探索了退火条件。X射线衍射仪(XRD)结果为纯相,X射线荧光光谱仪(XRF)结果证明杂质含量较低。利用吸收光谱计算在972 nm及1 535 nm附近的吸收截面,分别为3.24×10-21 cm2、8.43×10-21 cm2,半峰全宽(FWHM)分别为28.22 nm、27.31 nm。热学性能测试结果表明,在30 ℃时热导率为13.28 W·m-1·K-1。利用扫描电子显微镜(SEM)对晶体表面微观形貌进行了表征。  相似文献   

20.
二维(2D)石墨烯具有原子层厚度,在电子器件中展示出突破摩尔定律限制的巨大潜力。目前,化学气相沉积(CVD)是一种广泛应用于石墨烯生长的方法,满足低成本、大面积生产和易于控制层数的需求。然而,由于催化金属(例如Cu)衬底一般为多晶特性,导致CVD法生长的石墨烯晶体质量相对较差。为此,通过高温退火工艺制备了Cu (111)单晶衬底,使石墨烯的初始成核过程得到了很好的控制,从而实现了厘米尺寸的高质量单晶石墨烯的制备。根据二者的晶格匹配关系,Cu (111)衬底为石墨烯生长提供了唯一的成核取向,相邻石墨烯成核岛的边界能够缝合到一起。单晶石墨烯具有高电导率,相较于原始多晶Cu上生长的石墨烯(1 415.7Ω·sq-1),其平均薄层电阻低至607.5Ω·sq-1。高温退火能够清洁铜箔,从而获得表面粗糙度较低的洁净石墨烯。将石墨烯用于场效应晶体管(FET),器件的最大开关比为145.5,载流子迁移率为2.31×103 cm2·V-1·s-1。基于以上结果,相信本工作中...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号