首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
正1引言设C~(m×n)表示m×n阶复矩阵的集合,I_n表示n阶单位矩阵.对于矩阵A∈C~(m×n),A~*表示它的共轭转置矩阵.设矩阵A∈C~(n×n),如果A~2=A,则称矩阵A为幂等矩阵;如果A~2=A=A~*,则称矩阵A为正交投影矩阵.设A∈C~(n×n)本文主要研究下面的二次矩阵方程AXA=XAX,(1.1)称之为Yang-Baxter-like方程,因为其与统计物理中分别由Yang[1]和Baxter[2]独立得到的经典Yang-Baxter方程相似.  相似文献   

2.
矩阵方程AXB+CYD=E对称最小范数最小二乘解的极小残差法   总被引:1,自引:0,他引:1  
<正>1引言本文用R~(n×m)表示全体n×m实矩阵集合,用SR~(n×n)表示全体n×n实对称矩阵集合,OR~(n×n)表示全体n×n实正交矩阵集合.用I_n表示n阶单位矩阵,用A*B表示矩阵A与B的Hadamard乘积.对任意矩阵A,B∈R~(n×m),定义内积〈A,B〉=tr(B~T A),其中  相似文献   

3.
我们考虑非线性规划问题(P)■f(x),其中R={x|Ax=a,Bx≤b},A是p×n矩阵,其秩为p,B是q×n矩阵,x∈E~n,a∈E~p,b∈E~q,f(x)∈C~1.我们以R~*表示(P)的最优解集合,并假定R非空.最近,M.S.Bazaraa与J.J.Goode  相似文献   

4.
称X∈R~(m×n)为实(R,S)对称矩阵,若满足X=RXS,其中R∈R~(m×m)和S∈R~(n×n)为非平凡实对合矩阵,即R=R~(-1)≠±I_m,S=S~(-1)≠±I_n.该文将优化理论中求凸集上光滑函数最小值的增广Lagrangian方法应用于求解矩阵不等式约束下实(R,S)对称矩阵最小二乘问题,即给定正整数m,n,p,t,q和矩阵A_i∈R~(m×m),B_i∈R~(n×n)(i=1,2,…,q),C∈R~(m×m),E∈R~(p×m),F∈R~(n×t)和D∈R~(p×t),求实(R,S)对称矩阵X∈R~(m×m)且在满足相容矩阵不等式EXF≥D约束下极小化‖∑_(i=1)~qA_iXB_i-C‖,其中EXF≥D表示矩阵EXF-D非负,‖·‖为Frobenius范数.该文给出求解问题的矩阵形式增广Lagrangian方法的迭代格式,并用数值算例验证该方法是可行且高效的.  相似文献   

5.
1引言设矩阵A∈C~(n×n),B∈C~(m×m),Q∈C~(n×m)为列满秩矩阵,令R=AQ-QB.当R的范数很小的时候,我们分析矩阵B的特征值对A的特征值的逼近性.当A,B都是Hermite阵时,上述问题已经被Kahan解决.近年来,对可对角化矩阵的情形,取得了一些新的成果.[4][5][6]中给出了几个范数不等式,并应用于矩阵特征值  相似文献   

6.
正1引言为表述方便,用C~(m×n)表示m×n复矩阵的全体,C~m=C~(m×1).‖·‖表示向量或矩阵的2-范数.对A∈C~(m×n),v∈C~m及正整数m,K[A,v,m]=[v,Av,A~2v,...,A~(m-1)v]称为Krylov矩阵,span(K[A,v,m])就是由A和v生成的Krylov子空间.e_j是适当阶单位矩阵的第j列.设A_i∈C~(m×n)(i=0,1,…,d)是给定的矩阵,记  相似文献   

7.
正1引言1.1 背景简介设A ∈ R~(n×n)为n阶实对称矩阵,矩阵A的特征值分解是找正交矩阵U ∈R~(n×n),使得A=UAU~T,(1.1)其中U~T指U的转置,Λ为对角矩阵,且Λ=diag(λ_1,λ_2,…,λ_n),其中λ_i,i=1,…,n是矩阵A的特征值.矩阵A的奇异值分解为A=UEU~H,(1.2)其中,U ∈ C~(n×n)是酉矩阵,U~H是U的共轭转置,∑是非负实对角矩阵.当A正定时,奇异值分解和特征值分解等价.对一般实对称阵,奇异值和特征值绝对值相同.在实际应用中,往往不需要求得矩阵A的全部特征值和特征向量,只需要其绝对值最大的若干特征值所构成的近似特征值分解,以便进行矩阵近似求逆等任务.这种近似特征值分解被称为主特征值分解(Dominant Eigenvalue Decomposition),在矩阵近似求逆和主成分分析(PCA)[1]等方面有重要应用.  相似文献   

8.
矩阵特征值的几个扰动定理   总被引:1,自引:1,他引:0  
1 引言 设A∈C~(n×m),B∈C~(m×m)(m≤n),它们的特征值分别为{λ_k}_(k=1)~n和{μ_k}_(k=1)~m.令 R=AQ-QB (1)这里Q∈C~(n×m)为列满秩矩阵.Kahan研究了矩阵A在C~(n×m)上的Rayleigh商的性质,证明了下列定理:设A为Hermite矩阵,Q为列正交矩阵,即Q~HQ=I,而B=Q~HAQ,则存在 1,2,… ,n的某个排列π,使得 {sum from j=1 to m │μ_j-λ_(π(j))│~2}~(1/2)≤2~(1/2)‖R‖_F (2)其中R如(1)所示,‖·‖_F为矩阵的Frobenius范数.刘新国在[2]中将此定理推广到B为可对角化矩阵的情形,并且还建立了较为一般的扰动定理:设A为正规矩阵,B为可对角化矩阵;存在非奇异矩阵G,使得G~(-1)BG为对角阵,则存在1,2,…,n的某个排列π,使得 │μ_j-λ_(π(j))│≤2(2~(1/2))nK(G)_(σ_m~(-1))‖R‖_F,j=1,2,…,m. (3)  相似文献   

9.
本文研究了半张量积下矩阵方程组AX=B,XC=D在不同情况下的最小二乘解X*∈R~(p×q),其中矩阵A∈R~(m×n),B∈R~(h×k),C∈R~(a×b),D∈R~(l×d)给定.根据半张量积的定义将其转变为普通乘积下的矩阵方程组,再结合矩阵奇异值分解及矩阵微分给出该方程组在不同情况下最小二乘解的解析表达式,并用数值算例加以验证.  相似文献   

10.
正1引言设C~(m×n)表示m×n复矩阵的集合,rank(A)表示矩阵A的秩,对于A∈C~(m×n),使得rank(A~k)=rank(A~(k+1))成立的最小正整数k称为A的指标,记作ind(A).设ind(A)=k,满足A~(k+1)X=A~k,XAX=X,AX=XA的矩阵X称为矩阵A的Drazin逆,记为A~D.若ind(A)=1,则A~D称为A的群逆,记作A~#.记A~π=I-AA~D.矩阵的Drazin逆在奇异微分方程,迭代法,控制论中都有广泛的应用~([1,2]).  相似文献   

11.
1 引 言 以C~(m×n)表所有m×n复元素矩阵的全体,对于给定的矩阵A∈C~(m×m),B∈C~(n×n)和C∈C~(m×n),矩阵方程 X-AXB=C (1.1)称为离散李雅普诺夫矩阵方程,它与控制理论有密切的关系。关于这类方程的解法,  相似文献   

12.
矩阵方程ATXB+BTXTA=D的极小范数最小二乘解   总被引:1,自引:0,他引:1  
1引言本文用Rm×n表示所有m×n实矩阵全体,ORn×n,ASRn×n分别表示n×n实正交矩阵类与反对称矩阵类.‖·‖F表示矩阵的Frobenius范数,A+为矩阵A的Moore-Penrose广义逆,A*B与A(?)B分别表示矩阵4与B的Hadamard乘积及Kronecker乘积,即若A=(aij),B=(bij),则A*B=(ajibij),A(?)B=(aijB),vec4表示矩阵A的按行拉直,即若A=[aT1,aT2,…,aTm],其中ai为A的行向量,则vecA=(a1a2…am)T.设A∈Rn×m,B∈Rp×m,D∈Rm×m,我们考虑不相容线性矩阵方程ATXB+BTXTA=D(1.1)  相似文献   

13.
正1 Introduction and Main Results LetΩ■R~d (with d≥1) be a bounded domain with a C~2 boundary Ω.Letω■Ωbe an open and nonempty subset with its characteristic function χ_ω.Let A■(a_(ij))_(1≤i,j≤n)∈R~(n×n)and B■(b_(ij))_(1≤i≤n,1≤j≤m)∈R~(n×m) be two constant matrices,where n≥2 and m≥1.Let y_0∈L~2(Ω)~n.Consider the controlled linear parabolic system  相似文献   

14.
设A∈C~(n×n),B∈C~(k×k)均为Hermite矩阵,它们的特征值分别为{λ_j}_(j=1)~n和{μ_j}_(j=1)~k(k≤n);Q∈~(n×k)为列满秩矩阵.令 (1) 则存在A的k个特征值λ_(j_2),λ_(j_2),…,λ_(j_k),使得 (2) 其中σ_k为Q的最小奇异值,||·||_2表示矩阵的谱范数.这是著名的Kahan定理·1996年曹志浩等在[2]中将(2)加强为 (3) 这是Kahan的猜想.在本文中,我们讨论将Kahan定理中“B为k阶Hermite矩阵”改为B为k阶(任意)方阵后,特征值的扰动估计,有以下结果. 定理 设A∈C~(n×n)为Hermite矩阵,其特征值为{λ_j}_(j=1)~n,B∈C~(k×k)的特征值为{μ_j}_(j=1)~k,而Q∈C~(n×k)为列满秩矩阵.则存在A的k个特征值λ_(j_1),λ_(j_2),…,λ_(j_k),使得  相似文献   

15.
实对称带状矩阵特征值反问题   总被引:1,自引:1,他引:0  
戴华 《计算数学》1988,10(1):107-111
用R~(n×m)表示所有n×m实矩阵的集合;OR~(n×n)表示所有n×n正交矩阵的集合;S_(n,r)表示所有带宽为2r+1的n阶实对称矩阵的集合;||·||_F表示矩阵的Frobenius范数,||·||表示向量的Euclid范数.任取A∈R~(n×m),满足AA~-A=A 的A~-∈R~(m×n)叫做A的内逆,满足AA_l~-A=A和(AA_l~-)~T=AA_l~-的A_l~-∈R~(m×n)叫做A的最小二乘广义逆,  相似文献   

16.
正1引言对给定的矩阵A∈R~(n×n)和正定阵B∈R~(n×n),特征值互补问题(EiCP)~([1-3])是指:求实数λ和向量x∈R~n\{0}使得{y=(A-λB)x y≥0,x≥0 y~Tx=0 (1)它源于工程和物理问题,如对力学接触问题和结构力学系统的稳定性的研究[3-6].EiCP也可表示为如下形式的锥约束特征值问题[7,8]:对给定的矩阵A∈R~(n×n)和正定阵B∈R~(n×n),求实数λ和向量量x∈R~n\{0}使得  相似文献   

17.
基于交替投影算法求解单变量线性约束矩阵方程问题   总被引:2,自引:1,他引:1  
研究如下线性约束矩阵方程求解问题:给定A∈R~(m×n),B∈R~(n×p)和C∈R~(m×p),求矩阵X∈R(?)R~(n×n)"使得A×B=C以及相应的最佳逼近问题,其中集合R为如对称阵,Toeplitz阵等构成的线性子空间,或者对称半(ε)正定阵,(对称)非负阵等构成的闭凸集.给出了在相容条件下求解该问题的交替投影算法及算法收敛性分析.通过大量数值算例说明该算法的可行性和高效性,以及该算法较传统的矩阵形式的Krylov子空间方法(可行前提下)在迭代效率上的明显优势,本文也通过寻求加速技巧进一步提高算法的收敛速度.  相似文献   

18.
实对称矩阵广义特征值反问题   总被引:10,自引:0,他引:10  
本文研究如下实对称矩阵广义特征值反问题: 问题IGEP,给定X∈R~(n×m),1=diag(λ_II_k_I,…,λ_pI_k_p)∈R~(n×m),并且λ_I,…,λ_p互异,sum from i=1 to p(k_i=m,求K,M∈SR~(n×n),或K∈SR~(n×n),M∈SR_0~(n×m),或K,M∈SR_0~(n×n),或K∈SR~(n×n),M∈SR_+~(n×n),或K∈SR_0~(n×n),M∈SR_+~(n×n),或K,M∈SR_+~(n×m), (Ⅰ)使得 KX=MXA, (Ⅱ)使得 X~TMX=I_m,KX=MXA,其中SR~(n×n)={A∈R~(n×n)|A~T=A},SR_0~(n×n)={A∈SR~(n×n)|X~TAX≥0,X∈R~n},SR_+~(n×n)={A∈SR~(n×n)|X~TAX>0,X∈R~n,X≠0}. 利用矩阵X的奇异值分解和正交三角分解,我们给出了上述问题的解的表达式.  相似文献   

19.
一类对称正交对称矩阵反问题的最小二乘解   总被引:19,自引:1,他引:18  
1 引言 本文记号R~(n×m),OR~(n×n),A~+,I_k,SR~(n×n),rank(A),||·||,A*B,BSR~(n×n)和ASR~(n×n)参见[1].若无特殊声明文中的P为一给定的矩阵且满足P∈OR~(n×n)和P=P~T. 定义1 设A=(α_(ij))∈R~(n×n).若A满足A=A~T,(PA)~T=PA则称A为n阶对称正交对称矩阵;所有n阶对称正交对称矩阵的全体记为SR_P~n.若A∈R~(n×n)满足A~T=A,(PA)~T=-PA,则称A为n阶对称正交反对称矩阵;所有n阶对称正交反对  相似文献   

20.
对Π_k空间上一般对称算子代数,给出了对称理想的结构的两个结果.(1)令A是Π_k空间上一般对称算子代数.若M_1∩M_2≠{0},则存在对■~((k))不变的子空间V∈~(k)H~(k),满足M_1∩M_2=F(V) J,这里J=(■),T属于k×k矩阵代数,V=(R){VXX│X∈D},R和R⊥是对*-算子代数A_p~(k)不变的.(2)令A是Π_k空间上一般对称算子代数.设△=M_1∩M_2≠{0}.则M_2:△ U(Q),其中U(Q)是下列元的集(■),这里B∈A_p,q_i是算子代数U到R~⊥的线性映射,并满足条件:q(A B)=Aq(B),A,B∈A_p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号