首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正1引言为表述方便,用C~(m×n)表示m×n复矩阵的全体,C~m=C~(m×1).‖·‖表示向量或矩阵的2-范数.对A∈C~(m×n),v∈C~m及正整数m,K[A,v,m]=[v,Av,A~2v,...,A~(m-1)v]称为Krylov矩阵,span(K[A,v,m])就是由A和v生成的Krylov子空间.e_j是适当阶单位矩阵的第j列.设A_i∈C~(m×n)(i=0,1,…,d)是给定的矩阵,记  相似文献   

2.
正1引言设C~(m×n)表示m×n复矩阵的集合,rank(A)表示矩阵A的秩,对于A∈C~(m×n),使得rank(A~k)=rank(A~(k+1))成立的最小正整数k称为A的指标,记作ind(A).设ind(A)=k,满足A~(k+1)X=A~k,XAX=X,AX=XA的矩阵X称为矩阵A的Drazin逆,记为A~D.若ind(A)=1,则A~D称为A的群逆,记作A~#.记A~π=I-AA~D.矩阵的Drazin逆在奇异微分方程,迭代法,控制论中都有广泛的应用~([1,2]).  相似文献   

3.
正1引言设A=(a_(ij))∈C~(n×n),N={1,2,…,n}.记R_i(A)= sum |a_(ij)| from j≠i (i∈N),又记N_1=N_1(A)={i∈N:0|a_(ii)|≤R_i(A)},N_2=N_2(A)={i∈N:|a_(ii)R_i(A)}.定义1设A=(a_(ij))∈C~(n×n),如果|a_(ii)|R_i(A)(i∈N),则称A为严格对角占优矩阵.严格对角占优矩阵的集合记为D.如果存在n阶正对角矩阵D使得AD∈D,则称A为广义严格对角占优矩阵.广义严格对角占优矩阵的集合记为D.  相似文献   

4.
任意体上矩阵的ρMoore-Penrose逆的某些显式   总被引:4,自引:1,他引:3  
设K是一个任意的体,表示K上所有矩阵的集合,K~(m×n)表示K上m×n矩阵的集合,K_r~(m×n)={A∈K~(m×n)|RankA=r}.推广[1]中的概念,我们引入定义1.设的一个变换,如果满足 (i)(AB)~ρ=B~ρA~ρ,A∈K~(m×n),B∈K~(?); (ii)(A~ρ)~ρ=A,A∈, 那么ρ叫做的一个对合函数. 定义2.设ρ是的一个对合函数,A∈K~(m×n),如果存在X∈K~(n×m),满足下面关于ρ的Penrose方程:  相似文献   

5.
矩阵双侧旋转与逼近   总被引:1,自引:0,他引:1  
首先,引入一些符号.用C~(m×n)表示m×n复矩阵的集合,U~(i×m)={A∈C~(l×m)│A~(II)A=I_m(l≥m)}.I_m表示m阶单位矩阵,A~H表示矩阵A的共轭转置矩阵,tr(A)表示矩阵A的迹,Re[tr  相似文献   

6.
加权Moore-Penrose逆的扰动理论   总被引:5,自引:0,他引:5  
§1.引言设A∈C~(m×n),M和N分别为m和n阶Hermite正定阵,则存在唯一的K∈C~(n×m),满足AXA=A,XAX=X,(MAX)=MAX,(NXA)=NXA.这里X称为A的加权Moore-Penrose逆,记作X=A_(MN)~+. 当M和N分别为m和n阶单位阵I_m和I_m时,A_(Im)~+=A~+,A~+称为A的Moors-Penrose逆,当A为非异方阵时,A~+=A~(-1).  相似文献   

7.
等式约束加权线性最小二乘问题的解法   总被引:1,自引:0,他引:1  
1 引言 在实际应用中常会提出解等式约束加权线性最小二乘问题 min||b-Ax||_M,(1.1) x∈C~n s.t.Bx=d, 其中B∈C~(p×n),A∈C~(q×n),d∈C~p,b∈C~q,M∈C~(q×q)为Hermite正定阵. 对于问题(1.1),目前已有多种解法,见文[1—3).本文将利用广义逆矩阵的知识,给出(1.1)的通解及迭代解法.本文中关于矩阵广义逆与投影算子(矩阵)的记号基本上与文[4]的相同.例如,A~+表示A的MP逆,P_L表示到子空间L上的正交投影算子,λ_(max)(MAY)表示矩阵M~(1/2)AY的最大特征值.我们还要用到广义BD逆的概念: 设A∈C~(n×n),L为C~n的子空间,则称A_(L)~(+)=P_L(AP_L+P_L⊥)~+为A关于L的广义BD逆.  相似文献   

8.
一类对称正交对称矩阵反问题的最小二乘解   总被引:19,自引:1,他引:18  
1 引言 本文记号R~(n×m),OR~(n×n),A~+,I_k,SR~(n×n),rank(A),||·||,A*B,BSR~(n×n)和ASR~(n×n)参见[1].若无特殊声明文中的P为一给定的矩阵且满足P∈OR~(n×n)和P=P~T. 定义1 设A=(α_(ij))∈R~(n×n).若A满足A=A~T,(PA)~T=PA则称A为n阶对称正交对称矩阵;所有n阶对称正交对称矩阵的全体记为SR_P~n.若A∈R~(n×n)满足A~T=A,(PA)~T=-PA,则称A为n阶对称正交反对称矩阵;所有n阶对称正交反对  相似文献   

9.
线性流形上对称正交反对称矩阵反问题的最小二乘解   总被引:1,自引:0,他引:1  
设P是n阶对称正交矩阵,如果n阶矩阵A满足AT=A和(PA)T=-PA,则称A为对称正交反对称矩阵,所有n阶对称正交反对称矩阵的全体记为SARnp.令S={A∈SARnp f(A)=‖AX-B‖=m in,X,B〗∈Rn×m本文讨论了下面两个问题问题Ⅰ给定C∈Rn×p,D∈Rp×p,求A∈S使得CTAC=D问题Ⅱ已知A~∈Rn×n,求A∧∈SE使得‖A~-A∧‖=m inA∈SE‖A~-A‖其中SE是问题Ⅰ的解集合.文中给出了问题Ⅰ有解的充要条件及其通解表达式.进而,指出了集合SE非空时,问题Ⅱ存在唯一解,并给出了解的表达式,从而得到了求解A∧的数值算法.  相似文献   

10.
1引言在计算数学、数学物理、控制论与矩阵论中,非奇异H-矩阵是有着重要应用的一类特殊矩阵,有关其数值判定也一直是矩阵计算的重要课题,不少学者对此进行了研究,得到了许多结果,如文[1]-[10]都给出一些比较实用的判别方法.本文另提出了一些新的实用性判别,进一步改进了文[1]的主要结果.用Cn×n表示n阶复矩阵集,设A=(aij)∈Cn×n,记,若|aii|≥Λi(i=1,2,…,n)(本文用Λi表示Λi(A)),则称A为对角占优矩阵;如果每个不等号都为严格成立,则称A为严格对角占优矩阵,记A∈D;若存在正对角阵X,使得AX为严格对角占优矩阵,则称A为广义严格对角占优阵,记A∈D.设A∈Zn×n={(aij)∈Cn×n|aij≤0,i≠j;i,j∈N},若A=sI-B,s>ρ(B),其中B为非负方阵,ρ(B)表示B的谱半径,则称A为非奇异M-矩阵.若A∈Cn×n的比较矩阵M(A)=(mij)为非奇异M-矩阵,则称A为非奇异H-矩阵,其中  相似文献   

11.
《大学数学》2020,(1):115-120
证明了如下结论:设A∈C~(n×n)是群可逆矩阵,则(i)A为EP矩阵当且仅当矩阵方程A~HXA=XAA~H在χ_A至少有一个解;(ii)A为EP矩阵当且仅当矩阵方程A~HXA=AA~HX在χ_A至少有一个解,其中χ_A={A,A~#,A~+,A~H,(A~#)~H,(A~+)~H}.  相似文献   

12.
设A∈C~(n×n),B∈C~(k×k)均为Hermite矩阵,它们的特征值分别为{λ_j}_(j=1)~n和{μ_j}_(j=1)~k(k≤n);Q∈~(n×k)为列满秩矩阵.令 (1) 则存在A的k个特征值λ_(j_2),λ_(j_2),…,λ_(j_k),使得 (2) 其中σ_k为Q的最小奇异值,||·||_2表示矩阵的谱范数.这是著名的Kahan定理·1996年曹志浩等在[2]中将(2)加强为 (3) 这是Kahan的猜想.在本文中,我们讨论将Kahan定理中“B为k阶Hermite矩阵”改为B为k阶(任意)方阵后,特征值的扰动估计,有以下结果. 定理 设A∈C~(n×n)为Hermite矩阵,其特征值为{λ_j}_(j=1)~n,B∈C~(k×k)的特征值为{μ_j}_(j=1)~k,而Q∈C~(n×k)为列满秩矩阵.则存在A的k个特征值λ_(j_1),λ_(j_2),…,λ_(j_k),使得  相似文献   

13.
1引言设矩阵A∈C~(n×n),B∈C~(m×m),Q∈C~(n×m)为列满秩矩阵,令R=AQ-QB.当R的范数很小的时候,我们分析矩阵B的特征值对A的特征值的逼近性.当A,B都是Hermite阵时,上述问题已经被Kahan解决.近年来,对可对角化矩阵的情形,取得了一些新的成果.[4][5][6]中给出了几个范数不等式,并应用于矩阵特征值  相似文献   

14.
<正>1引言考虑如下Sylvester方程:AX+XB=F(1)这里A∈C~(m×m),B∈C~(n×n),F∈C~(m×n)是复数矩阵.令A=W+iT,B=U+iV,Q,T∈R~(m×m),U,V∈R~(n×n)都是实对称矩阵,且W,U是不定的,T,V是正定的.我们假定-TW≤T,-VU≤V.对于任意矩阵W和T,WT(W≤T)意味着T-W是  相似文献   

15.
设K为任意除环,F记其中心,K_r~m×n记K上秩r的m×n矩阵的集合.若A∈K_r~m×n则A’记A的转置,又设σ为K的对合反自同构则A→A’~σ为一个对合函数,记A’~σ=A,由此可定义A的M—P广义逆A~ 本文中I_n记n阶单位阵,GL_n(K)记K上n阶一般线性群,(E_ij)_mn记K上m×n矩阵且(i,j)位置为1,其余位置为0,本文研究广义逆的共变条件,推广了[2]的有关结果.  相似文献   

16.
1引言 设Cn,n表示n×n阶全体复矩阵的集合.记A*,R(A),N(A),rk (A),‖A‖,ρ(A)分别表示矩阵A的共轭转置,值域,核空间,秩,谱范数,谱半径.记A的指标为Ind(A)=k,其中k是满足rk(Ak+1) =rk(Ak)成立的最小非负整数.进一步,记CCMn={A | A∈Cn,n,rk(A2)=rk(A)}.1955年,Penrose在文献[1]给出Moore-Penrose逆的经典刻画:设A∈Cm,n,则A的Moore-Penrose逆A+是唯一满足下面四个方程的矩阵(1)AXA=A,(2)XAX=X,(3)(AX)*=AX,(4)(XA)*=XA.  相似文献   

17.
广义逆A(2)T,S的子式   总被引:1,自引:0,他引:1  
1.引言 设A∈Cm×n,M和N分别为m和n阶Hermite正定阵,考虑下列方程 (1) AXA = A (2) XAX = X (3) (AX)* = AX (4) (XA)* = XA (3M) (MAX)* = MAX (4N) (NXA)* = NXA 如果X∈Cm×m满足条件(1)和(2),则称X为A的自反广义逆,记作X=A(1,2);如果X满足条件(2),则称X为A的{2}逆,记作X=A(2);如果X满足(1)-(4),则称X为A的M-P逆,记作X=A+;如果X满足(1)、(2)、(3M)、(4N),则称X为A的加权M-P逆,记作A+MN.  相似文献   

18.
1引 言与引理 最近,文[1]定义了长方矩阵的一种加权群逆:设A∈Cm×n,W∈Cn×m.称满足下列矩阵方程组的矩阵X∈Cm×n为A的加W权群逆:(W1)AWXWA=A, (W2)XWAWX=X, (W3)AWX=XWA通常记A的加W权群逆为A#W.若A#W存在,则它是唯一的.  相似文献   

19.
关于复方阵的平方根   总被引:1,自引:1,他引:0  
本刊文 [1]中提出如何判断一个方阵是否存在平方根的问题 .这里 ,我们就 n阶复方阵情形给出三个判别准则 .设 A是 n阶复方阵 ,JA 表示它的若当标准形 ,则存在相似变换矩阵 P,使得 A=PJAP-1 .有关复方阵 A的若当标准形 JA 以及相似变换矩阵P的求法 ,见本刊文 [2 ]或 [3 ] ,本文不再赘述 .定义 1 设 A是 n阶复方阵 ,若存在 n阶复方阵 B,使得 B2 =A,则称 B为 A的平方根 .为书写简便 ,我们用记号 Jr( x) ( r≥ 1)与diag[B1 ,B2 ,… ,Bs]分别表示 r阶若当矩阵和对角块矩阵 :x 1 x 1x∈ Mr( C) ,B1 B2 Bs.用文 [2 ]中给出的计算复…  相似文献   

20.
N—范数,M—最小二乘解的扰动理论   总被引:2,自引:1,他引:1  
一 引言与预备知识 设A∈C~(mxn),M与N分别为m阶与n阶正定的Hermite矩阵。则存在唯一的矩阵X∈C~(n×m),满足  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号