首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2017,43(10):7789-7796
This study is focused on using the dust from metallurgy as a pigment. The agglomerating dust is formed during metallurgical processes. This waste product is interesting for recycling process. The main mineralogical phase of dust is hematite α-Fe2O3. Both synthetic and natural iron oxides are commonly used as pigments in ceramic industry. In this experiment the metallurgy dusts were used as a pigment for preparation of glazes and engobes. Agglomerating dusts were used both precalcined thermally at 700 °C and 900 °C and in an original state. The prepared glazes were composed of a transparent glaze base with 10 wt% agglomerating dusts as pigment. The glazes calcined at 1060 °C were finally yellow colored and glazes calcined at 900 °C were brown colored. Engobes contained a ceramic clay base with 1, 5, 10 and 50 wt% of dust as pigment. Engobes calcined at 900 °C were red and grey colored. The pigments were characterized by X-ray diffraction (XRD), chemical (XRFS) analysis, granulometry (PSD), thermogravimetric (TG) and differential thermal (DTA) analysis, scanning electron microscopy (SEM) and CIELab values.  相似文献   

2.
《Ceramics International》2017,43(10):7415-7423
Duplex ceramic coatings, consisting of an inner NiCr-Cr3C2-based coating and an outmost AlCrN film, were produced on the steel substrate in succession by velocity oxygen-fuel spraying (HVOF) and cathodic vacuum arc methods, and then isochronally annealed at annealing temperatures below 900 °C for 2 h. The thermal stability and mechanical properties of the annealed samples were systematically studied by means of X-ray diffraction, Optical microscope and transmission electron microscope, in association with mechanical property measurements. The results show that the microstructure, phase evolution and mechanical properties of duplex ceramic coatings are significantly dependent on the annealing temperature. Metastable fcc-AlCrN solid solution in AlCrN film first decomposes to rich-Al and rich-Cr domains by spinodal decomposition at 700 °C, leading to a notable increase in hardness due to its smaller grain size and high elastic strain field, and then to equiaxed hcp-AlN and Cr2N by the nucleation and growth at 900 °C, leading to a notable decrease in hardness due to the recrystallization and the formation of hcp-AlN. Meanwhile, the both decarburization of Cr3C2 to Cr7C3 occurs at 800 °C, but becomes more intensive at 900 °C, leading to a notable loss in hardness. In addition, the dissolution of Cr3C2 produces high density of porosity, which also reduces the hardness. The hardness tests show the following ordering of load-bearing capacity for the duplex ceramic coatings: 700 °C>As-deposited >800 °C>900 °C. Tribological property measurements demonstrate that the wear resistance of the tested duplex ceramic coatings obeys the following ordering: 700 °C>As-deposited >800 °C>900 °C. The improved wear resistance is due to high surface hardness, load-bearing capacity and thermal stability. In addition, the wear mechanisms are shown.  相似文献   

3.
The hot corrosion behaviors of Sr(Y0.05Yb0.05Zr0.9)O2.95 (SYYZ) ceramic were investigated in Na2SO4, V2O5, and Na2SO4 + V2O5 salts mixture, respectively. Na2SO4 did not react with SYYZ ceramic at 900, 950 and 1000 °C. m-ZrO2, YVO4 and YbVO4 were the main corrosion products on the SYYZ ceramic surface in V2O5 at 800 and 900 °C, whereas Sr3V2O8 and t-ZrO2 appeared at 1000 °C. In Na2SO4 + V2O5 salts mixture, the corrosion products were Sr3V2O8 and t-ZrO2 at 800 and 900 °C on the SYYZ ceramic surface, however, a new phase of SrZrO3 developed at 1000 °C. The phase transformation and chemical interaction are the primary corrosion mechanisms for degradation of SYYZ ceramic.  相似文献   

4.
《Ceramics International》2015,41(8):9455-9460
The black ceramic pigments with spinel structure have been prepared by using Cr-rich leather sludge in this paper. The washed Cr-rich leather sludge calcined at 1100 °C for 1 h as chromium oxide precursor (named as CA) was mixed with an appropriate proportion of other industrial metallic oxides, followed synthesizing black ceramic pigment by sintering. Both non-washed and washed sludge fired at 1100 °C were characterized by X-ray fluorescence (XRF) in order to determine their chemical compositions and X-ray diffraction (XRD) analysis to confirm that CA mainly contains Cr2O3 crystal phase. The results show that CA could be used as a source of chromium to prepare black pigment. The crystalline phases of obtained pigments were characterized by XRD. Furthermore, the morphology as well as the composition of pigments was investigated by scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS). The color coordinates of pigments were examined and compared with the commercial pigments based on CIE-L* a* b* values measured using UV–vis spectroscopy. The obtained pigments sintered at 1200 °C with 35–55 wt% content of CA possess the excellent black spinel structure and color effect. Under optimized conditions, the pigment has low average spectral reflectance (7%).  相似文献   

5.
A dense γ-Y2Si2O7/B2O3-Al2O3-SiO2 glass coating was fabricated by slurry spraying method on porous Si3N4 ceramic for water resistance. Thermal shock failure was recognized as one of the key failure modes for porous Si3N4 radome materials. In this paper, thermal shock resistance of the coated porous Si3N4 ceramics were investigated through rapid quenching thermal shock experiments and transient finite element analysis. Thermal shock resistance of the coating was tested at 700 °C, 800 °C, 900 °C and 1000 °C. Results showed that the cracks initiated within the coating after thermal shock from 800 °C to room temperature, thus leading to the reduction of the water resistance. Based on the finite element simulation results, thermal shock failure tended to occur in the coating layer with increasing temperature gradient, and the critical thermal shock failure temperature was measured as 872.24 °C. The results obtained from finite element analysis agree well with that from the thermal shock tests, indicating accuracy and feasibility of this numerical simulation method. Effects of thermo-physical properties for the coating material on its thermal shock resistance were also discussed. Thermal expansion coefficient of the coating material played a more decisive role in decreasing the tangent tensile stress.  相似文献   

6.
As a new black ceramic pigment, encapsulated carbon black pigment has been prepared by a sol–gel-spraying method. The obtained pigment sintered at 900 °C for 2 h in air has a deep black hue (L* = 19), indicating carbon black can be fully covered. In the pigment, a dense coating layer on carbon black is formed due to the fast transformation from sol into gel by rapid extraction of solvent. The transparent silica phase spaces out the fine crystalline (zirconia or zircon), which permits to display the color of carbon black. This preparation method provides a way to prepare the encapsulated pigments. It will provide more colorful ceramic pigment applied in ceramic decoration by encapsulating.  相似文献   

7.
In the present study, the effect of SiC addition on properties of basalt base glass–ceramic coating was investigated. SiC reinforced glass–ceramic coating was realized by atmospheric air plasma spray coating technique on AISI 1040 steel pre-coated with Ni + 5 wt.%Al bond coat. Composite powder mixture consisted of 10%, 20% and 30% SiC by weight were used for coating treatment. Controlled heat treatment for crystallization was realized on pre-coated samples in argon atmosphere at 800 °C, 900 °C and 1000 °C which determined by differential thermal analysis for 1–4 h in order to obtain to the glass–ceramic structure. Microstructural examination showed that the coating performed by plasma spray coating treatment and crystallized was crack free, homogeneous in macro-scale and good bonded. The hardness of the coated samples changed between 666 ± 27 and 873 ± 32 HV0.01 depending on SiC addition and crystallization temperature. The more the SiC addition and the higher the treatment temperature, the harder the basalt base SiC reinforced glass–ceramic coating became. X-ray diffraction analysis showed that the coatings include augeite [(CaFeMg)–SiO3], diopside [Ca(Mg0.15Fe0.85)(SiO3)2], albite [(Na,Ca)Al(Si,Al)3O8], andesine [Na0.499Ca0.492(Al1.488Si2.506O8] and moissanite (SiC) phases. EDX analyses support the X-ray diffraction analysis.  相似文献   

8.
《Ceramics International》2017,43(15):12126-12137
Mechanical resistance of Al2O3 + TiO2 nanocomposite ceramic coating deposited by electrostatic spray deposition method onto X10CrAlSi18 steel to thermal and slurry tests was investigated. The coating was produced from colloidal suspension of TiO2 nanoparticles dispersed in 3 wt% solution of Al2(NO3)3, as Al2O3 precursor, in ethanol. TiO2 nanoparticles of two sizes, 15 nm and 32 nm, were used in the experiments. After deposition, coatings were annealed at various temperatures, 300, 1000 and 1200 °C, and next exposed to cyclic thermal and slurry tests. Regardless of annealing temperature and the size of TiO2 nanoparticles, the outer layer of all coatings was porous. The first five thermal cycles caused a rapid increase of aluminum content of the surface layer to 30–37 wt%, but further increase in the number of thermal cycles did not affect the aluminum content. The oxidation rate of coating-substrate system was lower during the thermal tests than during annealing. The oxidation rate was also lower for smaller TiO2 particles (15 nm) forming the coating than for the larger ones (32 nm). The protective properties of Al2O3 + TiO2 coating against intense oxidation of substrate were lost at 1200 °C. Slurry tests showed that coatings annealed at 1000 °C had the best slurry resistance, but thermal tests had weakened this slurry resistance, mainly due to decreasing adhesion of the coating.  相似文献   

9.
《Ceramics International》2017,43(12):9041-9046
Hot corrosion behavior of (Gd0.9Sc0.1)2Zr2O7 ceramic exposed to V2O5 molten salt at 700–1000 °C was investigated, providing better understanding of its corrosion resistance as a promising thermal barrier coating. Obvious corrosion reaction occurred between (Gd0.9Sc0.1)2Zr2O7 and V2O5 molten salt after 4 h heat treatment, corrosion products being temperature dependent. At 700 °C, large amount of Sc2O3 doped ZrV2O7 and GdVO4, together with a minor amount of Sc2O3-stabilized tetragonal ZrO2 (t-ZrO2), formed on the sample surfaces. With the increase of the test temperature, Sc2O3 doped ZrV2O7 turned to decompose, leading to the formation of more t-ZrO2. At 900 °C and 1000 °C, the corrosion products were composed of GdVO4 and t-ZrO2. The mechanism by which the corrosion reaction occurs is proposed based on phase diagrams and Lewis acid-base rule.  相似文献   

10.
The objective of this work was to examine linear thermal expansion of virgin and poled 0.57Pb(Sc1/2Nb1/2)O3–0.43PbTiO3 ceramics between 30 °C and 600 °C by contact dilatometry. The thermal expansion dL/Lo of the virgin ceramic increases with increasing temperature until approximately 260 °C. The physical and technical thermal expansion coefficients were determined. At 260 °C the physical thermal coefficient is 2.08 × 10?6 K?1. Between 260.0 °C and 280.0 °C an anomaly in the thermal expansion vs. temperature and an endothermic peak in the differential scanning calorimetry curves correspond to the phase transition region from tetragonal to cubic phase. At temperatures from 280 °C to 600 °C the thermal expansion dL/Lo increases again.In the derivative of the dL/Lo heating curves of the poled ceramics, additionally to the anomaly at 270 °C, also the anomaly at 160 °C is observed, which is associated with the depolarization of the material during heating.  相似文献   

11.
The B2O3 added Ba(Zn1/3Nb2/3)O3 (BBZN) ceramic was sintered at 900 °C. BaB4O7, BaB2O4, and BaNb2O6 second phases were found in the BBZN ceramic. Since BaB4O7 and BaB2O4 second phases have an eutectic temperature around 900 °C, they might exist as the liquid phase during sintering at 900 °C and assist the densification of the BZN ceramics. Microwave dielectric properties of dielectric constant (ɛr) = 32, Q × f = 3500 GHz, and temperature coefficient of resonance frequency (τf) = 20 ppm/°C were obtained for the BZN with 5.0 mol% B2O3 sintered at 900 °C for 2 h. The BBZN ceramics were not sintered below 900 °C and the microwave dielectric properties of the BBZN ceramics sintered at 900 °C were very low. However, when CuO was added, BBZN ceramic was well sintered even at 875 °C. The liquid phase related to the BaCu(B2O5) second phase could be responsible for the decrease of sintering temperature. Good microwave dielectric properties of ɛr = 36, Q × f = 19,000 GHz and τf = 21 ppm/°C can be obtained for CuO doped BBZN ceramics sintered at 875 °C for 2 h.  相似文献   

12.
《Ceramics International》2017,43(5):4583-4593
SiCw/Al2O3 honeycomb ceramics were engaged as sensible shell materials for encapsulating Al-Si alloys (latent heat materials) in the honeycomb holes to obtain alloy/ceramic composite materials with a high thermal storage capacity for high-temperature solar thermal storage applications. The stability evaluation between the sensible honeycomb ceramics and the latent alloys had been conducted and the failure mechanism for the latent alloys was investigated. Results indicated that the addition of the latent alloys could improve the thermal storage capacity of the sensible honeycomb ceramics significantly by >114% and the thermal storage densities of honeycombs containing Al-12Si and Al-20Si alloys were 1141.3 kJ/kg and 1106 kJ/kg (400–900 °C), respectively. The composite materials exhibited excellent physical and chemical stability. No cracks formed in the honeycomb ceramics and no leakage of alloys was discovered after the composite materials were exposed to 100 thermal cycles in a high-temperature testing environment. The oxidation of Al at >600 °C would lower the latent heat of alloys and the thermal storage densities decreased to 1039.9 kJ/kg and 1013.2 kJ/kg after enduring 100 thermal cycles. This study not only provides a sensible-latent system of thermal storage materials with excellent stability but also gives an insight into the protection of metal containers against the corrosion from Al-based alloys.  相似文献   

13.
The effect of grain growth on the thermal conductivity of SiC ceramics sintered with 3 vol% equimolar Gd2O3-Y2O3 was investigated. During prolonged sintering at 2000 °C in an argon or nitrogen atmosphere, the β  α phase transformation, grain growth, and reduction in lattice oxygen content occurs in the ceramics. The effects of these parameters on the thermal conductivity of liquid-phase sintered SiC ceramics were investigated. The results suggest that (1) grain growth achieved by prolonged sintering at 2000 °C accompanies the decrease of lattice oxygen content and the occurrence of the β  α phase transformation; (2) the reduction of lattice oxygen content plays the most important role in enhancing the thermal conductivity; and (3) the thermal conductivity of the SiC ceramic was insensitive to the occurrence of the β  α phase transformation. The highest thermal conductivity obtained was 225 W(m K)−1 after 12 h sintering at 2000 °C under an applied pressure of 40 MPa in argon.  相似文献   

14.
《Ceramics International》2016,42(7):8620-8626
In this work a 19.58Li2O·11.10ZrO2·69.32SiO2 (mol%) glass–ceramic matrix was prepared and milled in order to determine its coefficient of thermal expansion (CTE) and to study how it is influenced by the addition of nanosized Al2O3 particles (1–5 vol%) and submicrometric Al2O3 particles (5 vol%). Comminution studies from the LZS parent glass frit showed that a powder with an adequate particle size (3.5 µm) is achieved after 120 min of dry milling followed by a second step of 60 h wet milling. The obtained LZS glass–ceramic samples (fired at 900 °C/30 min) showed an average relative density of ∼98% with zirconium silicate and lithium disilicate as main crystalline phases. Prepared composites with 1, 2.5 and 5 vol% of nanosized Al2O3 and 5 vol% submicrometric Al2O3 showed average relative densities varying from 97% to 94% as the alumina content increased. The formation of β-spodumene in the obtained composites leads to reduce the CTEs, whose values ranged from 9.5 to 4.4×10−6 °C−1. Composites with 5% nanosized alumina showed a CTE lower than that of the equivalent formulation with submicrometric alumina.  相似文献   

15.
Aluminum nitride (AlN) ceramics with the concurrent addition of CaZrO3 and Y2O3 were sintered at 1450-1700 °C. The degree of densification, microstructure, flexural strength, and thermal conductivity of the resulting ceramics were evaluated with respect to their composition and sintering temperature. Specimens prepared using both additives could be sintered to almost full density at relatively low temperature (3 h at 1550 °C under nitrogen at ambient pressure); grain growth was suppressed by grain-boundary pinning, and high flexural strength over 630 MPa could be obtained. With two-step sintering process, the morphology of second phase was changed from interconnected structure to isolated structure; this two-step process limited grain growth and increased thermal conductivity. The highest thermal conductivity (156 Wm−1 K−1) was achieved by two-step sintering, and the ceramic showed moderate flexural strength (560 MPa).  相似文献   

16.
Cobalt-doped willemite is a promising blue ceramic pigment, but some important aspects concerning crystal structure, optical properties and technological behaviour are still undisclosed. In order to get new insight on these features, willemite pigments (Zn2?xCoxSiO4, 0 < x < 0.3) were synthesized by the ceramic route and characterized from the structural (XRPD with Rietveld refinement), optical (DRS and colorimetry), microstructural (SEM, STEM, TEM, EDX, EELS) and technological (simulation of the ceramic process) viewpoints. The incorporation of cobalt in the willemite lattice, taking preferentially place in the Zn1 tetrahedral site, induces an increase of unit-cell parameters, metal–oxygen distances, and inter-tetrahedral tilting. It causes shifting and enhanced splitting of spin-allowed bands of Co2+ in tetrahedral coordination, implying slight changes of crystal field strength Dq and Racah B parameter, but increasing spin-orbit coupling parameter λ. Willemite pigments impart deep blue hue to ceramic glazes and glassy coatings with a colouring performance better than commercial Co-bearing colorants in the 800–1200 °C range. Detailed SEM-TEM investigation and microanalysis proved that no diffusion phenomena occur at the pigment–glassy coating interface and that willemite pigments are chemically inert during firing at 1050 °C.  相似文献   

17.
To fabricate aluminum titanate ceramics that possess both low thermal expansion coefficients and excellent mechanical properties, the co-doping of MgO with Y2O3, La2O3 and Nb2O5 was examined. Doping with MgO lowered the formation reaction temperature of aluminum titanate and prevented the formation of oriented grain regions. Liquid-phase sintering at 1500 °C of the MgO-La2O3-doped ceramic resulted in the formation of a minor amount of elongated grains with lengths of approximately 130 μm. This microstructure resulted in a high resistance against crack propagation during the bend test. Grain pull-out and grain bridging mechanisms as well as crack deflection and branching resulted in the high resistance. A low thermal expansion coefficient of 0.7 × 10−6/deg was observed for this ceramic. The co-doping of MgOY2O3 led to high bending strength and moderate low thermal expansion coefficient. The co-doping of MgO-Nb2O5 resulted in an extended grain growth by liquid-phase sintering at 1500 °C and poor mechanical properties.  相似文献   

18.
《Ceramics International》2016,42(14):15485-15492
To study the inter-lamellar pores evolution under thermal exposure and how it affects the coating properties, free standing atmospheric plasma sprayed (APS) La2Zr2O7 (LZO) coating was subjected to thermal exposure at the temperatures of 1200 °C and 1300 °C for different durations. It was found that APS LZO coating experiences a rapid sintering during the early 5–20 h of thermal exposure. Such microstructure evolution behavior was attributed to the presence of the lamellar structure, which contains most 2D pores with a small inter-lamellar spacing. As a result, the density, inter-lamellar bonding ratio, mechanical properties and thermal conductivity of the LZO coating remarkably increase in about 20 h of thermal exposure. It was revealed that the evolution of the properties of the APS LZO coating during high temperature exposure is mainly ascribed to the shape change of the inter-lamellar pores for the formation of grain bridging in inter-lamellar pores.  相似文献   

19.
Gd2O3 and Yb2O3 co-doped 3.5 mol% Y2O3–ZrO2 and conventional 3.5 mol% Y2O3–ZrO2 (YSZ) powders were synthesized by solid state reaction. The objective of this study was to improve the phase stability, mechanical properties and thermal insulation of YSZ. After heat treatment at 1500 °C for 10 h, 1 mol% Gd2O3–1 mol% Yb2O3 co-doped YSZ (1Gd1Yb-YSZ) had higher resistance to destabilization of metastable tetragonal phase than YSZ. The hardness of 5 mol% Gd2O3–1 mol% Yb2O3 co-doped YSZ (5Gd1Yb-YSZ) was higher than that of YSZ. Compared with YSZ, 1Gd1Yb-YSZ and 5Gd1Yb-YSZ exhibited lower thermal conductivity and shorter phonon mean free path. At 1300 °C, the thermal conductivity of 5Gd1Yb-YSZ was 1.23 W/m K, nearly 25% lower than that of YSZ (1.62 W/m K). Gd2O3 and Yb2O3 co-doped YSZ can be explored as a candidate material for thermal barrier coating applications.  相似文献   

20.
《Ceramics International》2017,43(7):5509-5516
A low temperature co-fired ceramic based on Li2ZnTi3O8 (LZT), that possess auspicious thermal and dielectric properties is reported. In order to achieve the low sintering temperature suitable for LTCC applications (875 °C), 1 wt% of 20:Li2O-20: MgO-20: ZnO-20:B2O3-20: SiO2 (LMZBS) glass was added to LZT ceramics. The post-milled powder had an average particle size of 450 nm with an effective surface area of 0.812 m2g−1. A well dispersed tape casting slurry was prepared using xylene/ethanol mixture as solvent and fish oil as dispersant. The crystal structure and microstructure of the tapes were analyzed through XRD and scanning electron microscopy (SEM). The microwave dielectric properties of the green as well as sintered tapes were measured at different frequencies (5, 10 and 15 GHz). The Li2ZnTi3O8+1 wt% LMZBS has shown excellent thermal conductivity of 5.8 W/mK, thermal expansivity (11.97 ppm/°C) closer to silver electrode, low temperature coefficient of dielectric constant (−29 ppm/°C) and ultralow dielectric losses (tanδ~10−4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号