首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
一类对称正交对称矩阵反问题的最小二乘解   总被引:19,自引:1,他引:18  
1 引言 本文记号R~(n×m),OR~(n×n),A~+,I_k,SR~(n×n),rank(A),||·||,A*B,BSR~(n×n)和ASR~(n×n)参见[1].若无特殊声明文中的P为一给定的矩阵且满足P∈OR~(n×n)和P=P~T. 定义1 设A=(α_(ij))∈R~(n×n).若A满足A=A~T,(PA)~T=PA则称A为n阶对称正交对称矩阵;所有n阶对称正交对称矩阵的全体记为SR_P~n.若A∈R~(n×n)满足A~T=A,(PA)~T=-PA,则称A为n阶对称正交反对称矩阵;所有n阶对称正交反对  相似文献   

2.
线性流形上实对称矩阵最佳逼近   总被引:27,自引:4,他引:23  
戴华 《计算数学》1993,15(4):478-488
1.引言 首先介绍一些记号,IR~(n×m)表示所有n×m实矩阵的全体,SIR~(n×n)表示所有n×n实对称矩阵的全体,OIR~(n×n)表示所有n×n正交矩阵的全体,I_n表示n阶单位矩阵,A~T和A~+分别表示矩阵A的转置和Moore-Penrose广义逆。对A=(a_(ij)),B=(b_(ij))∈IR~(n×m),A*B表示A与B的Hadamard积,定义为A*B=(a_(ij)b_(ij)),并且定义A与B的内积  相似文献   

3.
设R(C)为实(复)数域,H~(n×n)为n×n的Hermitian矩阵的集合。当A(∈C~(n×n))的特征值皆为实数时,如不特殊说明,约定A的特征值满足λ_1(A)≥…≥λ_n(A)。文[1]有如下不等式, 令A=B=[(?)],知(1)式一般不成立,(1)式是[1]将[2]的关于奇异值不等式  相似文献   

4.
矩阵方程ATXB+BTXTA=D的极小范数最小二乘解   总被引:1,自引:0,他引:1  
1引言本文用Rm×n表示所有m×n实矩阵全体,ORn×n,ASRn×n分别表示n×n实正交矩阵类与反对称矩阵类.‖·‖F表示矩阵的Frobenius范数,A+为矩阵A的Moore-Penrose广义逆,A*B与A(?)B分别表示矩阵4与B的Hadamard乘积及Kronecker乘积,即若A=(aij),B=(bij),则A*B=(ajibij),A(?)B=(aijB),vec4表示矩阵A的按行拉直,即若A=[aT1,aT2,…,aTm],其中ai为A的行向量,则vecA=(a1a2…am)T.设A∈Rn×m,B∈Rp×m,D∈Rm×m,我们考虑不相容线性矩阵方程ATXB+BTXTA=D(1.1)  相似文献   

5.
线性流形上对称正交对称矩阵逆特征值问题   总被引:2,自引:0,他引:2  
周富照  胡锡炎  张磊 《计算数学》2003,25(3):281-292
1.引言 令R~(n×m)表示所有n×m阶实矩阵集合;OR~(n×n)表示所有n阶正交矩阵全体;A~+表示A的Moore-penrose广义逆;I_к表示К阶单位阵;SR~(n×n)表示n阶实对称矩阵的全体;rank(A)表示A的秩;||·||是矩阵的Frobenius范数;对A=(a_(ij)),B=(b_(ij))∈R~(n×m),A*B表示A与B的Hadamard乘积,其定义为A*B=(a_(ij),b_(ij))。  相似文献   

6.
文[1]给出了下面的定理: 设A,B为两个n×n(n>1)阶正定厄米特矩阵;μ_1,…μ_4;ν_1,…ν_n分别为A,B的特征值,  相似文献   

7.
线性流形上中心对称矩阵的最佳逼近   总被引:10,自引:1,他引:9  
1 引 言令Rn×m表示所有n×m阶实矩阵集合;ORn×n表示所有n×n阶正交矩阵之集;A+表示矩阵A的Moore-Penrose广义逆;Iκ表示κ阶单位阵;||·||表示矩阵的Frobenius范数;rank(A)表示矩阵A的秩.设ei为n阶单位矩阵In的第i列(i=1,2,…,n),记Sn=(en,en-1,…,e1),易知  相似文献   

8.
1 引言 设Rn×m为所有n×m实矩阵的集合,ASRn×n为n阶实反对称矩阵的集合,ORn×n 为n阶实正交矩阵的全体. In是n阶单位矩阵,A+,R(A),N(A)分别表示矩阵A的 Moore-Penrose广义逆、值域及零空间,并记EA=I-AA+,FA=I-A+A(I为单位矩 阵,A为任意矩阵).对A=(aij),B=(bij)∈Rn×m,A*B=(aijbij)表示矩阵A与B 的Hadamard积.在Rn×m上定义矩阵A与B的内积为(A,B)=tr(BT A),则由此内积 导出的范数‖A‖=(A,A)~(1/2)是矩阵的Frobenius范数,并且Rn×m构成一个完备的内积 空间.  相似文献   

9.
设A∈C~(n×n),B∈C~(k×k)均为Hermite矩阵,它们的特征值分别为{λ_j}_(j=1)~n和{μ_j}_(j=1)~k(k≤n);Q∈~(n×k)为列满秩矩阵.令 (1) 则存在A的k个特征值λ_(j_2),λ_(j_2),…,λ_(j_k),使得 (2) 其中σ_k为Q的最小奇异值,||·||_2表示矩阵的谱范数.这是著名的Kahan定理·1996年曹志浩等在[2]中将(2)加强为 (3) 这是Kahan的猜想.在本文中,我们讨论将Kahan定理中“B为k阶Hermite矩阵”改为B为k阶(任意)方阵后,特征值的扰动估计,有以下结果. 定理 设A∈C~(n×n)为Hermite矩阵,其特征值为{λ_j}_(j=1)~n,B∈C~(k×k)的特征值为{μ_j}_(j=1)~k,而Q∈C~(n×k)为列满秩矩阵.则存在A的k个特征值λ_(j_1),λ_(j_2),…,λ_(j_k),使得  相似文献   

10.
矩阵特征值的几个扰动定理   总被引:1,自引:1,他引:0  
1 引言 设A∈C~(n×m),B∈C~(m×m)(m≤n),它们的特征值分别为{λ_k}_(k=1)~n和{μ_k}_(k=1)~m.令 R=AQ-QB (1)这里Q∈C~(n×m)为列满秩矩阵.Kahan研究了矩阵A在C~(n×m)上的Rayleigh商的性质,证明了下列定理:设A为Hermite矩阵,Q为列正交矩阵,即Q~HQ=I,而B=Q~HAQ,则存在 1,2,… ,n的某个排列π,使得 {sum from j=1 to m │μ_j-λ_(π(j))│~2}~(1/2)≤2~(1/2)‖R‖_F (2)其中R如(1)所示,‖·‖_F为矩阵的Frobenius范数.刘新国在[2]中将此定理推广到B为可对角化矩阵的情形,并且还建立了较为一般的扰动定理:设A为正规矩阵,B为可对角化矩阵;存在非奇异矩阵G,使得G~(-1)BG为对角阵,则存在1,2,…,n的某个排列π,使得 │μ_j-λ_(π(j))│≤2(2~(1/2))nK(G)_(σ_m~(-1))‖R‖_F,j=1,2,…,m. (3)  相似文献   

11.
线性流形上Hermite-广义反Hamilton矩阵反问题的最小二乘解   总被引:8,自引:0,他引:8  
张忠志  胡锡炎  张磊 《计算数学》2003,25(2):209-218
1.引言 令Rn×m表示所有n×m实矩阵集合,Cn×m表示所有n×m复矩阵集合,Cn=Cn×1,HCn×n表示所有n阶Hermite矩阵集合,UCn×n表示所有n阶酉矩阵集合,AHCn×n表示所有n阶反Hermite矩阵集合,R(A)表示A的列空间,N(A)表示A的零空间,A+表示A的Moore—Penrose广义逆,A*B表示A与B的Hadamard积,rank(A)表示矩阵A的秩.tr(A)表示矩阵A的迹.矩阵A,B的内积定义为(A,B)=tr(BHA),A,B∈Cn×m,由此内积诱导的范数为||A||=√(A,A)=[tr(AHA)]1/2,则此范数为Frobenius范数,并且Cn×m构成一个完备的内积空间,In表示n阶单位阵,i=√-1,记OASRn×n表示n×n阶正交反对称矩阵的全体,即  相似文献   

12.
两类矩阵反问题解的稳定性   总被引:1,自引:0,他引:1  
1 引 言 用R~(n×m)表示所有n×m实矩阵的全体,R_r~(n×m)表示R~(n×m)中矩阵秩为r的子集。A>0(A≥0)表示方阵A是实对称正定(半正定)矩阵。SR_+~(n×n)(SR_0~(n×n)表示所有n×n实  相似文献   

13.
记J为一广义反射矩阵,HAJn×n为关于J的n阶Hermitian非自反矩阵的集合.本文考虑如下两个问题:问题Ⅰ给定X,B∈n×m,求A∈HAJn×n,使得‖AX-B‖=min.问题Ⅱ给定X∈n×m,B∈n×n,求A∈HAJn×n,使得XHAX=B.首先利用奇异值分解讨论问题Ⅰ的解的通式,然后利用广义奇异值分解得到了问题Ⅱ有解的充分必要条件和解的通式,最后给出问题Ⅰ和Ⅱ的逼近解的具体表达式.  相似文献   

14.
矩阵方程XTAX=B的一类反问题   总被引:3,自引:0,他引:3  
1引言 本文用Rn×m表示所有n×m实矩阵全体;SR0n×n表示所有n阶实对称半正定矩阵全体;In表示n阶单位矩阵;A-,A+分别表示矩阵A的一个广义逆和Moore-Penrose广义逆;A≥0表示A为对称半正定矩阵;Sn=(en,en-1,…,e1)∈Rn×n,其中ei为单位阵In的第i列; [n/2]表示不超过n/2的最大整数.  相似文献   

15.
线性约束下的矩阵束最佳逼近及其应用   总被引:22,自引:1,他引:21  
戴华 《计算数学》1989,11(1):29-37
1.引言 用C~(n×m)表示所有n×m阶复矩阵的集合,R~(n×m)表示所有n×m阶实矩阵的集合,R_r~(n×m)表示R~(n×m)中矩阵秩为r的子集.任取A,B∈R~(n×m),定义内积和范数为  相似文献   

16.
关于Hadamard不等式的再改进   总被引:4,自引:0,他引:4  
本文提出并改进了文[1]中所给出的几个关于可除环上矩阵行列式的不等式,利用这些不等式我们给出了可除环上任意非奇异矩阵的经典Hadamard不等式的一个再改进. 定义1 设A=(a_(ij))_(n×n)是四元数除环Ω上的矩阵,A=(a_(ij))_(n×n)是A的共轭矩阵,如果A=A,则称A为自共轭矩阵,如果A的各阶主子式均为正实数,则称A为正定自共轭矩阵(文[2]定理4).  相似文献   

17.
对任意矩阵 M,用 r( M)表示 M的秩。熟知 ,矩阵的秩是矩阵的一个重要不变量 ,对矩阵的加法和乘法 ,我们有下面两个基本的不等式。(一 )设 A、B是两个 m× n矩阵 ,则r( A +B)≤ r( A) +r( B) ( 1 )   (二 )设 A、B分别是两个 m× n、n× l矩阵 ,则r( A) +r( B) -n≤ r( AB)≤ min{ r( A) ,r( B) }它通常被称为 Sylvester不等式。对这两个不等式 ,有不同的证明和理解 ,见 [1、2 ]。在本文里 ,我们要结合矩阵的满秩分解 ,用不等式 (二 )来研究不等式 (一 ) ,从中给出 r( A+B)≤ r( A) +r( B)的一个推广形式。本文所需的矩阵知识是基…  相似文献   

18.
酉不变范数下极分解的扰动界   总被引:1,自引:1,他引:0  
陈小山  黎稳 《计算数学》2005,27(2):121-128
设A是m×n(m≥n)且秩为n的复矩阵.存在m×n矩阵Q满足Q*Q=I和n×n正定矩阵H使得A=QH,此分解称为A的极分解.本文给出了在任意酉不变范数下正定极因子H的扰动界,改进文[1,11]的结果;另外也首次提供了乘法扰动下酉极因子Q在任意酉不变范数下的扰动界.  相似文献   

19.
一个不等式的简明证法   总被引:1,自引:0,他引:1  
设A是n×n稳定矩阵(即它的特征根皆有负实部),B和G是n×n对称正定矩阵,且A~TB+BA=-G,那么对任何x,y∈R~n,皆有  相似文献   

20.
实对称矩阵广义特征值反问题   总被引:10,自引:0,他引:10  
本文研究如下实对称矩阵广义特征值反问题: 问题IGEP,给定X∈R~(n×m),1=diag(λ_II_k_I,…,λ_pI_k_p)∈R~(n×m),并且λ_I,…,λ_p互异,sum from i=1 to p(k_i=m,求K,M∈SR~(n×n),或K∈SR~(n×n),M∈SR_0~(n×m),或K,M∈SR_0~(n×n),或K∈SR~(n×n),M∈SR_+~(n×n),或K∈SR_0~(n×n),M∈SR_+~(n×n),或K,M∈SR_+~(n×m), (Ⅰ)使得 KX=MXA, (Ⅱ)使得 X~TMX=I_m,KX=MXA,其中SR~(n×n)={A∈R~(n×n)|A~T=A},SR_0~(n×n)={A∈SR~(n×n)|X~TAX≥0,X∈R~n},SR_+~(n×n)={A∈SR~(n×n)|X~TAX>0,X∈R~n,X≠0}. 利用矩阵X的奇异值分解和正交三角分解,我们给出了上述问题的解的表达式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号