首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Improving the efficiency of electron–hole separation and charge‐carrier utilization plays a central role in photocatalysis. Herein, Pt nanoparticles of ca. 3 nm are incorporated inside or supported on a representative metal–organic framework (MOF), UiO‐66‐NH2, denoted as Pt@UiO‐66‐NH2 and Pt/UiO‐66‐NH2, respectively, for photocatalytic hydrogen production via water splitting. Compared with the pristine MOF, both Pt‐decorated MOF nanocomposites exhibit significantly improved yet distinctly different hydrogen‐production activities, highlighting that the photocatalytic efficiency strongly correlates with the Pt location relative to the MOF. The Pt@UiO‐66‐NH2 greatly shortens the electron‐transport distance, which favors the electron–hole separation and thereby yields much higher efficiency than Pt/UiO‐66‐NH2. The involved mechanism has been further unveiled by means of ultrafast transient absorption and photoluminescence spectroscopy.  相似文献   

2.
The Zr‐containing metal–organic frameworks (MOFs) formed by terephthalate (UiO‐66) and 2‐aminoterephthalate ligands [UiO‐66(NH2)] are two notably water‐resistant MOFs that exhibit photocatalytic activity for hydrogen generation in methanol or water/methanol upon irradiation at wavelength longer than 300 nm. The apparent quantum yield for H2 generation using monochromatic light at 370 nm in water/methanol 3:1 was of 3.5 % for UiO‐66(NH2). Laser‐flash photolysis has allowed detecting for UiO‐66 and UiO‐66(NH2) the photochemical generation of a long lived charge separated state whose decay is not complete 300 μs after the laser flash. Our finding and particularly the influence of the amino group producing a bathochromic shift in the optical spectrum without altering the photochemistry shows promises for the development of more efficient MOFs for water splitting.  相似文献   

3.
Nitrones are key intermediates in organic synthesis and the pharmaceutical industry. The heterogeneous synthesis of nitrones with multifunctional catalysts is extremely attractive but rarely explored. Herein, we report ultrasmall platinum nanoclusters (PtNCs) encapsulated in amine‐functionalized Zr metal–organic framework (MOF), UiO‐66‐NH2 (Pt@UiO‐66‐NH2) as a multifunctional catalyst in the one‐pot tandem synthesis of nitrones. By virtue of the cooperative interplay among the selective hydrogenation activity provided by the ultrasmall PtNCs and Lewis acidity/basicity/nanoconfinement endowed by UiO‐66‐NH2, Pt@UiO‐66‐NH2 exhibits remarkable activity and selectivity, in comparison to Pt/carbon, Pt@UiO‐66, and Pd@UiO‐66‐NH2. Pt@UiO‐66‐NH2 also outperforms Pt nanoparticles supported on the external surface of the same MOF (Pt/UiO‐66‐NH2). To our knowledge, this work demonstrates the first examples of one‐pot synthesis of nitrones using recyclable multifunctional heterogeneous catalysts.  相似文献   

4.
Hydrogen production from coal gasification provides a cleaning approach to convert coal resource into chemical energy, but the key procedures of coal gasification and thermal catalytic water–gas shift (WGS) reaction in this energy technology still suffer from high energy cost. We herein propose adopting a solar–driven WGS process instead of traditional thermal catalysis, with the aim of greatly decreasing the energy consumption. Under light irradiation, the CuOx/Al2O3 delivers excellent catalytic activity (122 μmol gcat?1 s?1 of H2 evolution and >95 % of CO conversion) which is even more efficient than noble‐metal‐based catalysts (Au/Al2O3 and Pt/Al2O3). Importantly, this solar‐driven WGS process costs no electric/thermal power but attains 1.1 % of light‐to‐energy storage. The attractive performance of the solar‐driven WGS reaction over CuOx/Al2O3 can be attributed to the combined photothermocatalysis and photocatalysis.  相似文献   

5.
The commercial high‐temperature water‐gas shift (HT‐WGS) catalyst consists of CuO‐Cr2O3‐Fe2O3, where Cu functions as a chemical promoter to increase the catalytic activity, but its promotion mechanism is poorly understood. In this work, a series of iron‐based model catalysts were investigated with in situ or pseudo in situ characterization, steady‐state WGS reaction, and density function theory (DFT) calculations. For the first time, a strong metal‐support interaction (SMSI) between Cu and FeOx was directly observed. During the WGS reaction, a thin FeOx overlayer migrates onto the metallic Cu particles, creating a hybrid surface structure with Cu‐FeOx interfaces. The synergistic interaction between Cu and FeOx not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H2O dissociation, and WGS reaction. These new fundamental insights can potentially guide the rational design of improved iron‐based HT‐WGS catalysts.  相似文献   

6.
Phosphorus‐modified all‐silica zeolites exhibit activity and selectivity in certain Brønsted acid catalyzed reactions for biomass conversion. In an effort to achieve similar performance with catalysts having well‐defined sites, we report the incorporation of Brønsted acidity to metal–organic frameworks with the UiO‐66 topology, achieved by attaching phosphonic acid to the 1,4‐benzenedicarboxylate ligand and using it to form UiO‐66‐PO3H2 by post‐synthesis modification. Characterization reveals that UiO‐66‐PO3H2 retains stability similar to UiO‐66, and exhibits weak Brønsted acidity, as demonstrated by titrations, alcohol dehydration, and dehydra‐decyclization of 2‐methyltetrahydrofuran (2‐MTHF). For the later reaction, the reported catalyst exhibits site‐time yields and selectivity approaching that of phosphoric acid on all‐silica zeolites. Using solid‐state NMR and deprotonation energy calculations, the chemical environments of P and the corresponding acidities are determined.  相似文献   

7.
Highly dispersed Pt‐CeO2 hybrids arched on reduced graphene oxide (Pt‐CeO2/rGO) were facilely synthesized by a combination of the reverse micelle technique and a redox reaction without any additional reductant or surfactant. Under a N2 atmosphere, the redox reaction between Ce3+ and Pt2+ occurs automatically in alkaline solution, which results in the formation of Pt‐CeO2/rGO nanocomposites (NCs). The as‐synthesized Pt‐CeO2/rGO NCs exhibit superior catalytic performance relative to that shown by the free Pt nanoparticles, Pt/rGO, Pt‐CeO2 hybrid, and the physical mixture of Pt‐CeO2 and rGO; furthermore, the nanocomposites show significantly better activity than the commercial Pt/C catalyst toward the hydrolysis of ammonia borane (NH3BH3) at room temperature. Moreover, the Pt‐CeO2/rGO NCs have remarkable stability, and 92 % of their initial catalytic activity is preserved even after 10 runs. The excellent activity of the Pt‐CeO2/rGO NCs can be attributed not only to the synergistic structure but also to the electronic effects of the Pt‐CeO2/rGO NCs among Pt, CeO2, and rGO.  相似文献   

8.
Metal–organic frameworks (MOFs) including the UiO‐66 series show potential application in the adsorption and conversion of CO2. Herein, we report the first tetravalent metal‐based metal–organic gels constructed from ZrIV and 2‐aminoterephthalic acid (H2BDC‐NH2). The ZrBDC‐NH2 gel materials are based on UiO‐66‐NH2 nanoparticles and were easily prepared under mild conditions (80 °C for 4.5 h). The ZrBDC‐NH2‐1:1‐0.2 gel material has a high surface area (up to 1040 m2 g?1) and showed outstanding performance in CO2 adsorption (by using the dried material) and conversion (by using the wet gel) arising from the combined advantages of the gel and the UiO‐66‐NH2 MOF. The ZrBDC‐NH2‐1:1‐0.2 dried material showed 38 % higher capture capacity for CO2 at 298 K than microcrystalline UiO‐66‐NH2. It showed high ideal adsorbed solution theory selectivity (71.6 at 298 K) for a CO2/N2 gas mixture (molar ratio 15:85). Furthermore, the ZrBDC‐NH2‐1:1‐0.2 gel showed activity as a heterogeneous catalyst in the chemical fixation of CO2 and an excellent catalytic performance was achieved for the cycloaddition of atmospheric pressure of CO2 to epoxides at 373 K. In addition, the gel catalyst could be reused over multiple cycles with no considerable loss of catalytic activity.  相似文献   

9.
A UiO‐66‐NCS MOF was formed by postsynthetic modification of UiO‐66‐NH2. The UiO‐66‐NCS MOFs displays a circa 20‐fold increase in activity against the chemical warfare agent simulant dimethyl‐4‐nitrophenyl phosphate (DMNP) compared to UiO‐66‐NH2, making it the most active MOF materials using a validated high‐throughput screening. The ?NCS functional groups provide reactive handles for postsynthetic polymerization of the MOFs into functional materials. These MOFs can be tethered to amine‐terminated polypropylene polymers (Jeffamines) through a facile room‐temperature synthesis with no byproducts. The MOFs are then crosslinked into a MOF–polythiourea (MOF–PTU) composite material, maintaining the catalytic properties of the MOF and the flexibility of the polymer. This MOF–PTU hybrid material was spray‐coated onto Nyco textile fibers, displaying excellent adhesion to the fiber surface. The spray‐coated fibers were screened for the degradation of DMNP and showed durable catalytic reactivity.  相似文献   

10.
Herein, a novel sensor (TPE‐UiO‐66) was designed via anchoring monodentate tetraphenylethylene (TPE) onto UiO‐66 framework. The combination of the distinct aggregation‐induced emission (AIE) of TPE and the easy replacement of monodentate linker by guest phosphate, makes TPE‐UiO‐66 an ideal platform for sensing HPO42–. Experimental results indicate that TPE‐UiO‐66 can selectively sense HPO42– from other common anions. The limit of detection (LOD) can reach to 5.56 μmol·L–1 and more importantly, TPE‐UiO‐66 also exhibits an ultra‐fast equilibrium response of 2 min, far faster than those of other sensors especially for UiO‐66‐NH2. The combination of experimental analysis and density functional theory (DFT) calculations demonstrates that the high selectivity, high sensitivity and fast response of HPO42– detection by TPE‐UiO‐66 can be attributed to the stronger coordination interactions of HPO42– with Zr‐O cluster of UiO‐66 than that of TPE molecule. This study not only provides a potential probe for phosphate, but also represents a novel strategy to design stimuli‐responsive fluorescent MOF‐based sensors via using monodentate AIEgens.  相似文献   

11.
Defect engineering is a versatile approach to modulate band and electronic structures as well as materials performance. Herein, metal–organic frameworks (MOFs) featuring controlled structural defects, namely UiO‐66‐NH2‐X (X represents the molar equivalents of the modulator, acetic acid, with respect to the linker in synthesis), were synthesized to systematically investigate the effect of structural defects on photocatalytic properties. Remarkably, structural defects in MOFs are able to switch on the photocatalysis. The photocatalytic H2 production rate presents a volcano‐type trend with increasing structural defects, where Pt@UiO‐66‐NH2‐100 exhibits the highest activity. Ultrafast transient absorption spectroscopy unveils that UiO‐66‐NH2‐100 with moderate structural defects possesses the fastest relaxation kinetics and the highest charge separation efficiency, while excessive defects retard the relaxation and reduce charge separation efficiency.  相似文献   

12.
Amino‐functionalized zirconium‐based metal‐organic frameworks (MOFs) have shown unprecedented catalytic activity compared to non‐functionalized analogues for hydrolysis of organophosphonate‐based toxic chemicals. Importantly, the effect of the amino group on the catalytic activity is significantly higher in the case of UiO‐66‐NH2, where the amino groups reside near the node, compared to UiO‐67‐m‐NH2, where they are directed away from the node. Herein, we show that the proximity of the amino group is crucial for fast catalytic activity towards hydrolysis of organophosphonate‐based nerve agents. The generality of the observed amine‐proximity‐dictated catalytic activity has been tested on two different MOF systems which have different topology. DFT calculations reveal that amino groups on all the MOFs studied are not acting as Brønsted bases; instead they control the microsolvation environment at the Zr6‐node active site and therefore increase the overall catalytic rates.  相似文献   

13.
A novel heterogeneous nanocatalyst was established by supporting molybdenum (VI) on Zr6 nodes in the structure of the well‐known UiO‐66 metal–organic framework (MOF). The structure of the UiO‐66 before and after Mo (VI) immobilization was confirmed with XRD, DR‐FTIR and UV–vis spectroscopy, and the presence and amount of Mo (VI) was identified by X‐ray photoelectron spectroscopy and inductively coupled plasma atomic emission spectroscopy. TEM imaging confirmed the absence of Mo clusters on the MOF surface, while SEM confirmed that the appearance of the MOF has not changed upon immobilizing the Mo (VI) catalyst. BET adsorption measurements were used to confirm the porosity of the catalyst. The catalytic activity of this heterogeneous catalyst was investigated in oxidation of sulfides with H2O2 in acetonitrile and oxidative desulfurization of dibenzothiophene. Easy work up, convenient and steady reuse and high activity and selectivity are prominent properties of this new hybrid material.  相似文献   

14.
The strategy to functionalize water‐stable metal–organic frameworks (MOFs) in order to improve their CO2 uptake capacities for efficient CO2 separation remains limited and challenging. We herein present an effective approach to functionalize a prominent water‐stable MOF, UiO‐66(Zr), by a combination of optimization and metalated‐ligand exchange. In particular, by systematic optimization, we have successfully obtained UiO‐66(Zr) of the highest BET surface area reported so far (1730 m2 g?1). Moreover, it shows a hybrid Type I/IV N2 isotherm at 77 K and a mesopore size of 3.9 nm for the first time. The UiO‐66 MOF underwent a metalated‐ligand‐exchange (MLE) process to yield a series of new UiO‐66‐type MOFs, among which UiO‐66‐(COONa)2‐EX and UiO‐66‐(COOLi)4‐EX MOFs have both enhanced CO2 working capacity and IAST CO2/N2 selectivity. Our approach has thus suggested an alternative design to achieve water‐stable MOFs with high crystallinity and gas uptake for efficient CO2 separation.  相似文献   

15.
We report a first solution strategy for controlled synthesis of Adams’ catalyst (i.e., α‐PtO2) by a facile and totally green approach using H2PtCl6 and water as reactants. The prepared α‐PtO2 nanocrystals (NCs) are ultrasmall in size and have very “clean” surfaces, which can be reduced to Pt NCs easily in ethanol under ambient conditions. Such Adams’ catalysts have been applied as electrocatalysts beyond the field of heterogeneous catalysis. Noticeably, the water‐only synthesized α‐PtO2 NCs and their derivative Pt NCs all exhibit much higher oxygen reduction reaction (ORR) activities and stabilities than that of the state‐of‐art Pt/C electrocatalysts. This study provides an example on the organics‐free synthesis of α‐PtO2 and Pt NCs as promising cathode catalysts for fuel cell applications and, particularly, this simple, straightforward method may open a new way for the synthesis of other “clean” functional nanomaterials.  相似文献   

16.
Solid‐state crystallization achieves selective confinement of metal–organic framework (MOF) nanocrystals within mesoporous materials, thereby rendering active sites more accessible compared to the bulk‐MOF and enhancing the chemical and mechanical stability of MOF nanocrystals. (Zr)UiO‐66(NH2)/SiO2 hybrid materials were tested as efficient and reusable heterogeneous catalysts for the synthesis of steroid derivatives, outperforming the bulk (Zr)UiO‐66(NH2) MOF. A clear correlation between the catalytic activity of the dispersed Zr sites present in the confined MOF, and the loading of the mesoporous SiO2, is demonstrated for steroid transformations.  相似文献   

17.
The catalytic activity of UiO‐66@Fe3O4@SiO2 catalyst was investigated in the fixation of carbon dioxide with epoxides under mild conditions. In this manner, a facile magnetization of UiO‐66 was achieved simultaneously by simply mixing this metal–organic framework and silica‐coated Fe3O4 nanoparticles in solution under sonication. The prepared catalyst was characterized using Fourier transform infrared and UV–visible spectroscopies, X‐ray diffraction, transmission and field emission scanning electron microscopies, N2 adsorption and inductively coupled plasma atomic emission spectroscopy. This new heterogeneous catalyst was applied as a highly efficient catalyst in the coupling of carbon dioxide with epoxides at mild temperatures and pressures. Furthermore, it could be easily recovered with the assistance of an external magnetic field and reused three consecutive times without significant loss of activity and mass.  相似文献   

18.
Selective catalytic reduction (SCR) of NOx with H2 as a reductant is the most promising denitration technology at low temperature. Achieving the conversion of NOx into N2 at ambient temperature not only prolongs the service life of the catalyst, but also provides more freedom for the arrangement of denitration units throughout the flue gas treatment equipment. However, the development of highly efficient, stable, and environmentally benign supported platinum‐based catalysts for H2‐SCR at ambient temperature is still a major challenge. Herein, a 0.5 wt % Pt/ZrO2@C catalyst, which was composed of carbon‐coated octahedral ZrO2 with highly dispersed Pt particles, was prepared by using a new stabilization strategy based on UiO‐66‐NH2 (a zirconium metal–organic framework) as a template. The catalytic performance of this Pt/ZrO2@C in H2‐SCR was tested and confirmed to achieve near 100 % NOx conversion at 90 °C. Also, 70 % N2 selectivity of the catalyst was achieved. The morphology, structure, and porous properties of the as‐synthesized nanocomposites were characterized by using data obtained from field‐emission SEM, TEM, XRD, Raman spectroscopy, thermogravimetric analysis, X‐ray photoelectron spectroscopy, and N2 adsorption–desorption isotherms. The results show that residual carbon formed by pyrolysis treatment is coated on octahedral ZrO2, and effectively prevents the agglomeration of platinum particles on the surface.  相似文献   

19.
Three kinds of natural biopolymers, gelatin, alginic acid and sodium carboxymethylcellulose (NaCMC), were reacted with oxalic acid in the presence of silica to yield complexes on the surface of silica, followed by reaction with H2PtCl6 6H2O to form Pt complexes, SiO2–gelatin–(COOH)2–Pt, SiO2–alginic acid–(COOH)2–Pt, and SiO2–NaCMC–(COOH)2–Pt, respectively. These complexes were able to catalyze the hydrogenation of 1‐heptene to give n‐heptane and that of nitrobenzene to give aniline at 25 °C and under 1 atm H2 in 100% yields. Experimental data show that the catalysts were very stable and could be reused without any remarkable change in catalytic activity. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
A series of porous metal–organic frameworks having flexible carboxylic acid pendants in their pores (UiO‐66‐ADn: n=4, 6, 8, and 10, where n denotes the number of carbons in a pendant) has been synthesized by post‐synthetic ligand exchange of terephthalate in UiO‐66 with a series of alkanedioic acids (HO2C(CH2)n?2CO2H). NMR, IR, PXRD, TEM, and mass spectral data have suggested that a terephthalate linker in UiO‐66 was substituted by two alkanedioate moieties, resulting in free carboxyl pendants in the pores. When post‐synthetically modified UiO‐66 was partially digested by adjusting the amount of added HF/sample, NMR spectra indicated that the ratio of alkanedioic acid/terephthalic acid was increased with smaller amounts of acid, implying that the ligand substitution proceeded from the outer layer of the particles. Gas sorption studies indicated that the surface areas and the pore volumes of all UiO‐66‐ADns were decreased compared to those of UiO‐66, and that the CO2 adsorption capacities of UiO‐66‐ADn (n=4, 8) were similar to that of UiO‐66. In the case of UiO‐66‐AD6, the CO2 uptake capacity was 34 % higher at 298 K and 58 % higher at 323 K compared to those of UiO‐66. It was elucidated by thermodynamic calculations that the introduction of flexible carboxyl pendants of appropriate length has two effects: 1) it increases the interaction enthalpy between the host framework and CO2 molecules, and 2) it mitigates the entropy loss upon CO2 adsorption due to the formation of multiple configurations for the interactions between carboxyl groups and CO2 molecules. The ideal adsorption solution theory (IAST) selectivity for CO2 adsorption over that of CH4 was enhanced for all of the UiO‐66‐ADns compared to that of UiO‐66 at 298 K. In particular, UiO‐66‐AD6 showed the most strongly enhanced CO2 uptake capacity and significantly increased selectivity for CO2 adsorption over that of CH4 at ambient temperature, suggesting that it is a promising material for sequestering CO2 from landfill gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号