首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   4篇
工业技术   26篇
  2021年   7篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2011年   2篇
  2005年   1篇
  2002年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
排序方式: 共有26条查询结果,搜索用时 128 毫秒
1.
Flavivirus genus includes many deadly viruses such as the Japanese encephalitis virus (JEV) and Zika virus (ZIKV). The 5′ terminal regions (TR) of flaviviruses interact with human proteins and such interactions are critical for viral replication. One of the human proteins identified to interact with the 5′ TR of JEV is the DEAD-box helicase, DDX3X. In this study, we in vitro transcribed the 5′ TR of JEV and demonstrated its direct interaction with recombinant DDX3X (Kd of 1.66 ± 0.21 µM) using microscale thermophoresis (MST). Due to the proposed structural similarities of 5′ and 3′ TRs of flaviviruses, we investigated if the ZIKV 5′ TR could also interact with human DDX3X. Our MST studies suggested that DDX3X recognizes ZIKV 5′ TR with a Kd of 7.05 ± 0.75 µM. Next, we performed helicase assays that suggested that the binding of DDX3X leads to the unwinding of JEV and ZIKV 5′ TRs. Overall, our data indicate, for the first time, that DDX3X can directly bind and unwind in vitro transcribed flaviviral TRs. In summary, our work indicates that DDX3X could be further explored as a therapeutic target to inhibit Flaviviral replication  相似文献   
2.
Ribonuclease Dicer belongs to the family of RNase III endoribonucleases, the enzymes that specifically hydrolyze phosphodiester bonds found in double-stranded regions of RNAs. Dicer enzymes are mostly known for their essential role in the biogenesis of small regulatory RNAs. A typical Dicer-type RNase consists of a helicase domain, a domain of unknown function (DUF283), a PAZ (Piwi-Argonaute-Zwille) domain, two RNase III domains, and a double-stranded RNA binding domain; however, the domain composition of Dicers varies among species. Dicer and its homologues developed only in eukaryotes; nevertheless, the two enzymatic domains of Dicer, helicase and RNase III, display high sequence similarity to their prokaryotic orthologs. Evolutionary studies indicate that a combination of the helicase and RNase III domains in a single protein is a eukaryotic signature and is supposed to be one of the critical events that triggered the consolidation of the eukaryotic RNA interference. In this review, we provide the genetic insight into the domain organization and structure of Dicer proteins found in vertebrate and invertebrate animals, plants and fungi. We also discuss, in the context of the individual domains, domain deletion variants and partner proteins, a variety of Dicers’ functions not only related to small RNA biogenesis pathways.  相似文献   
3.
The RecQ-related family of DNA helicases is required for the maintenance of genomic stability in organisms ranging from bacteria to humans. In humans, mutation of three RecQ-related helicases, BLM, WRN and RecQL4, cause the cancer-prone and premature ageing diseases of Bloom syndrome, Werner's syndrome and Rothmund-Thompson syndrome, respectively. In the fission yeast Schizosaccharomyces pombe, disruption of the rqh1(+) gene, which encodes the single Sz. pombe RecQ-related helicase, causes cells to display reduced viability and elevated levels of chromosome loss. After S-phase arrest or DNA damage, cells lacking rqh1(+) function display elevated levels of homologous recombination and defective chromosome segregation. Here we show that, like other RecQ family members, the Rqh1p protein displays 3' to 5' DNA helicase activity. Interestingly, however, unlike other RecQ family members, the helicase activity of Rqh1p is only partially required for its function in recovery from S-phase arrest or DNA damage. We also report that high cellular levels of Rqh1p result in lethal chromosome segregation defects, while more moderate levels of Rqh1p cause significantly elevated rates of chromosome loss. This suggests that careful regulation of RecQ-like protein levels in eukaryotic cells is vital for maintaining genome stability.  相似文献   
4.
We have determined the complete nucleotide sequence of a 12·5 kb segment from the right arm of chromosome II carried by the cosmid α20. The sequence encodes the 5′ end of the IRA1 gene. Two complete new open reading frames and the 3′ non-coding region of the SUP1 (SUP45) gene. A comparison of our sequence with the data bank reveals a 154 amino acid extension at the N-terminus of Ira1p compared to the previously predicted sequence. According to the 11th edition of the Saccharomyces cerevisiae genetic map, our sequence should encode the MAK5 gene, which is necessary for the maintenance of dsRNA killer plasmids. One of the two new open reading frames, YBR1119, is predicted to encode an RNA helicase, thus YBR1119 may correspond to the MAK5 gene. The sequence has been deposited in the EMBL data library under Accession Number X78937.  相似文献   
5.
Rift Valley fever virus (RVFV) is a mosquito-transmitted virus from the Bunyaviridae family that causes high rates of mortality and morbidity in humans and ruminant animals. Previous studies indicated that DEAD-box helicase 17 (DDX17) restricts RVFV replication by recognizing two primary non-coding RNAs in the S-segment of the genome: the intergenic region (IGR) and 5′ non-coding region (NCR). However, we lack molecular insights into the direct binding of DDX17 with RVFV non-coding RNAs and information on the unwinding of both non-coding RNAs by DDX17. Therefore, we performed an extensive biophysical analysis of the DDX17 helicase domain (DDX17135–555) and RVFV non-coding RNAs, IGR and 5’ NCR. The homogeneity studies using analytical ultracentrifugation indicated that DDX17135–555, IGR, and 5’ NCR are pure. Next, we performed small-angle X-ray scattering (SAXS) experiments, which suggested that DDX17 and both RNAs are homogenous as well. SAXS analysis also demonstrated that DDX17 is globular to an extent, whereas the RNAs adopt an extended conformation in solution. Subsequently, microscale thermophoresis (MST) experiments were performed to investigate the direct binding of DDX17 to the non-coding RNAs. The MST experiments demonstrated that DDX17 binds with the IGR and 5’ NCR with a dissociation constant of 5.77 ± 0.15 µM and 9.85 ± 0.11 µM, respectively. As DDX17135–555 is an RNA helicase, we next determined if it could unwind IGR and NCR. We developed a helicase assay using MST and fluorescently-labeled oligos, which suggested DDX17135–555 can unwind both RNAs. Overall, our study provides direct evidence of DDX17135–555 interacting with and unwinding RVFV non-coding regions.  相似文献   
6.
解旋恒温基因扩增技术在螨虫鉴定中的应用前景   总被引:1,自引:0,他引:1  
螨虫种类多,分布广,危害多样,已成为人们关注的对象。随着进出口植物、植物产品和食品的增加,其携带螨虫的风险越来越高,许多国家把螨虫作为检疫对象设置技术壁垒。由于螨虫体型微小,形态鉴定比较困难,一直是口岸检疫的一大难点。随着现代分子技术的发展,迫切需要建立快速、灵敏、准确的螨类检测方法。解旋酶恒温基因扩增技术(HDA)是一种简便、快速、高效、灵敏度高的体外恒温基因扩增技术。该技术依靠DNA解旋酶解开双链DNA、单链DNA结合蛋白(SSB)维持单链状态、DNA聚合酶催化靶片段的扩增。HDA不需要昂贵的仪器设备,适用于基层实验室。HAD能扩增微生物基因组DNA、病原菌DNA、质粒DNA和c DNA等,从其灵敏性、准确性和可操作性几方面来看,该方法适用于螨虫鉴定。  相似文献   
7.
A hit optimization protocol applied to the first nonnucleoside inhibitor of the ATPase activity of human DEAD-box RNA helicase DDX3 led to the design and synthesis of second-generation rhodanine derivatives with better inhibitory activity toward cellular DDX3 and HIV-1 replication. Additional DDX3 inhibitors were identified among triazine compounds. Biological data were rationalized in terms of structure-activity relationships and docking simulations. Antiviral activity and cytotoxicity of selected DDX3 inhibitors are reported and discussed. A thorough analysis confirmed human DDX3 as a valid anti-HIV target. The compounds described herein represent a significant advance in the pursuit of novel drugs that target HIV-1 host cofactors.  相似文献   
8.
9.
The mutations rad3-101 and rad3-102 (formerly rem1-1 and rem1-2) of the essential RAD3 gene of Saccharomyces cerevisiae confer a phenotype of semidominant enhancement of spontaneous mitotic recombination and mutation frequencies, but not extreme sensitivity to ultraviolet (UV) light. These properties differ from the previously published observations of other rad3 mutations, which are very UV-sensitive but do not alter recombination frequencies significantly. We have located the position of DNA sequence changes from wild-type RAD3 to the rad3-101 and rad3-102 mutations and have demonstrated that these sequence changes are necessary and sufficient to confer the (Rem?) mutant phenotype when transferred into otherwise wild-type RAD3 plasmids. The Rem? mutations are not located in the same region. It is possible that the two regions of the gene in which these mutations map define portions of the molecule which are in contact when folded in the native configuration. To begin to test this hypothesis, we have constructed two double mutant alleles, one with rad3-101 and rad3-102, and one with the UV-sensitive rad3-1 mutation and rad3-102. We find that plasmids carrying these double mutant alleles of RAD3 are no longer able to confer a hyper-recombinational phenotype and do not complement the UV-sensitivity of the excision-defective rad3-2 allele. We conclude that the double mutant alleles are non-functional for excision repair, and may be null. We have also constructed new rad3 alleles by oligonucleotide-directed mutagenesis and have tested their effects on spontaneous mutation and mitotic recombination and on UV repair.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号