首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3578篇
  免费   137篇
  国内免费   9篇
工业技术   3724篇
  2022年   15篇
  2021年   52篇
  2020年   28篇
  2019年   52篇
  2018年   54篇
  2017年   62篇
  2016年   80篇
  2015年   40篇
  2014年   76篇
  2013年   179篇
  2012年   96篇
  2011年   133篇
  2010年   119篇
  2009年   97篇
  2008年   141篇
  2007年   118篇
  2006年   94篇
  2005年   82篇
  2004年   68篇
  2003年   77篇
  2002年   65篇
  2001年   82篇
  2000年   60篇
  1999年   88篇
  1998年   309篇
  1997年   188篇
  1996年   125篇
  1995年   75篇
  1994年   84篇
  1993年   94篇
  1992年   41篇
  1991年   31篇
  1990年   52篇
  1989年   47篇
  1988年   55篇
  1987年   44篇
  1986年   40篇
  1985年   56篇
  1984年   35篇
  1983年   32篇
  1982年   27篇
  1981年   33篇
  1980年   36篇
  1979年   25篇
  1978年   35篇
  1977年   43篇
  1976年   65篇
  1975年   37篇
  1973年   17篇
  1970年   15篇
排序方式: 共有3724条查询结果,搜索用时 31 毫秒
1.
Calmodulin (CaM) is an important intracellular protein that binds Ca2+ and functions as a critical second messenger involved in numerous biological activities through extensive interactions with proteins and peptides. CaM’s ability to adapt to binding targets with different structures is related to the flexible central helix separating the N- and C-terminal lobes, which allows for conformational changes between extended and collapsed forms of the protein. CaM-binding targets are most often identified using prediction algorithms that utilize sequence and structural data to predict regions of peptides and proteins that can interact with CaM. In this review, we provide an overview of different CaM-binding proteins, the motifs through which they interact with CaM, and shared properties that make them good binding partners for CaM. Additionally, we discuss the historical and current methods for predicting CaM binding, and the similarities and differences between these methods and their relative success at prediction. As new CaM-binding proteins are identified and classified, we will gain a broader understanding of the biological processes regulated through changes in Ca2+ concentration through interactions with CaM.  相似文献   
2.
Femtosecond pulses from a Ti:Sapphire laser were used to irradiate specimens of yttria-stabilised (35% mol) tetragonal zirconia (Y-TZP) with the purpose of studying the effects of the irradiations on their surface properties and morphology after ageing. Zirconia disks were divided into eight groups (n = 32) according to their surface treatment and subsequent ageing: Control: no treatment; sandblasting: Al2O3 sandblasting 50 μm; and ultrashort laser pulses irradiation with 25 μJ pulses, considering two different scanning steps based on the width between two grooves. These groups were duplicated and submitted to ageing. The surfaces were analysed using scanning electron microscopy (SEM), and X-ray diffraction. A finite element analysis, a biaxial flexure test, as well as fractographic and Weibull analyses, were performed. The strengths of the disks were statistically different for the treatment factor, and the principal stresses seemed to be concentrated at the centre of the specimens, as predicted by the computer simulations. Ageing decreased the strengths for all groups and increased the Weibull modulus for the laser group with the 40 μm-width between two grooves. The sandblasting group presented the highest monoclinic phase peak. Although the most significant strength was found within the sandblasting group, the phase transformation was favourable to the laser groups. The Weibull modulus was higher for the laser group with the 60 μm-width between two grooves, confirming the highest homogeneity of its failure distribution. Regardless of the surface treatment, strength was decreased with ageing in all groups. The femtosecond Ti:Sa ultra-short pulse laser irradiation can be suggested as an alternative to the gold standard sandblasting in long-term Y-TZP zirconia rehabilitations, such as crowns and veneers.  相似文献   
3.
Polyethylene terephthalate (PET) is the most widely used polymer in the world. For the first time, the laser-driven integration of aluminum nanoparticles (Al NPs) into PET to realize a laser-induced graphene/Al NPs/polymer composite, which demonstrates excellent toughness and high electrical conductivity with the formation of aluminum carbide into the polymer is shown. The conductive structures show an impressive mechanical resistance against >10000 bending cycles, projectile impact, hammering, abrasion, and structural and chemical stability when in contact with different solvents (ethanol, water, and aqueous electrolytes). Devices including thermal heaters, carbon electrodes for energy storage, electrochemical and bending sensors show this technology's practical application for ultra-robust polymer electronics. This laser-based technology can be extended to integrating other nanomaterials and create hybrid graphene-based structures with excellent properties in a wide range of flexible electronics’ applications.  相似文献   
4.
Rift Valley fever virus (RVFV) is a mosquito-transmitted virus from the Bunyaviridae family that causes high rates of mortality and morbidity in humans and ruminant animals. Previous studies indicated that DEAD-box helicase 17 (DDX17) restricts RVFV replication by recognizing two primary non-coding RNAs in the S-segment of the genome: the intergenic region (IGR) and 5′ non-coding region (NCR). However, we lack molecular insights into the direct binding of DDX17 with RVFV non-coding RNAs and information on the unwinding of both non-coding RNAs by DDX17. Therefore, we performed an extensive biophysical analysis of the DDX17 helicase domain (DDX17135–555) and RVFV non-coding RNAs, IGR and 5’ NCR. The homogeneity studies using analytical ultracentrifugation indicated that DDX17135–555, IGR, and 5’ NCR are pure. Next, we performed small-angle X-ray scattering (SAXS) experiments, which suggested that DDX17 and both RNAs are homogenous as well. SAXS analysis also demonstrated that DDX17 is globular to an extent, whereas the RNAs adopt an extended conformation in solution. Subsequently, microscale thermophoresis (MST) experiments were performed to investigate the direct binding of DDX17 to the non-coding RNAs. The MST experiments demonstrated that DDX17 binds with the IGR and 5’ NCR with a dissociation constant of 5.77 ± 0.15 µM and 9.85 ± 0.11 µM, respectively. As DDX17135–555 is an RNA helicase, we next determined if it could unwind IGR and NCR. We developed a helicase assay using MST and fluorescently-labeled oligos, which suggested DDX17135–555 can unwind both RNAs. Overall, our study provides direct evidence of DDX17135–555 interacting with and unwinding RVFV non-coding regions.  相似文献   
5.
The addition of bioactive glasses to a Y:TZP matrix represents a feasible alternative to provide bioactivity to this material and optimize osseointegration. This work evaluated the effect of the BG concentration (0 and 10 wt%) and the sintering temperature (1200°C and 1300°C) on the microstructure, relative density, and flexural strength of the composite Y:TZP/BG. The Y:TZP and Y:TZP/BG powders were uniaxially pressed and sintered at 1200°C or 1300°C for 1 h. The microstructure was characterized by X-ray diffraction analysis, scanning electron microscopy, and energy-dispersive X-ray Spectroscopy. Relative density was calculated from density values obtained using the Archimedes’ principle. For the flexural strength, specimens (n = 6) were fractured in a biaxial flexural setup using a piston-on-three-balls fixture in a universal testing machine. Bioactivity test was performed in simulated body fluid solution. The results suggested that BG addition decreased the grain size of the composite, increased porosity and caused a significant decrease in the relative density and flexural strength. Crystalline phases of calcium stabilized cubic zirconia and sodium zirconium silicate were formed after the addition of BG. Finally, it was concluded that composite specimens sintered at 1300°C showed the highest density values and larger grains compared to those sintered at 1200°C.  相似文献   
6.
7.
Activity-directed synthesis (ADS) is a structure-blind, functional-driven molecular discovery approach. In this Concept, four case studies highlight the general applicability of ADS and showcase its flexibility to support different medicinal chemistry strategies. ADS deliberately harnesses reactions with multiple possible outcomes, and allows many chemotypes to be evaluated in parallel. Resources are focused on bioactive molecules, which emerge in tandem with associated synthetic routes. Some of the future challenges for ADS are highlighted, including the realisation of an autonomous molecular discovery platform. The prospects for ADS to become a mainstream lead generation approach are discussed.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号