首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   7篇
  国内免费   1篇
医药卫生   40篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2014年   12篇
  2013年   6篇
  2012年   5篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2006年   3篇
排序方式: 共有40条查询结果,搜索用时 31 毫秒
1.
Chronic infection with Opisthorchis viverrini for many years has been associated with the development of hepatobiliary diseases including cholangiocarcinoma. It is well known that inflammation is a key component of the tumor microenvironment, and that chronic inflammation plays an important role in tumorigenesis. Therefore, in this study cholangiocarcinogenesis was induced in Syrian hamsters in order to observe the cancer-related inflammation. The Syrian hamsters were divided into 5 groups: uninfected controls; normal Syrian hamsters infected with O. viverrini (OV); immunosuppressed Syrian hamsters infected with O. viverrini (OVis); normal Syrian hamsters infected with O. viverrini and administered N-nitrosodimethylamine (CCA); and immunosuppressed Syrian hamsters infected with O. viverrini and administered N-nitrosodimethylamine (CCAis). Syrian hamster livers were later observed for gross pathology and histopathological changes; COX2 was analyzed by immunohistochemical staining. We found a decreased number of inflammatory cells surrounding the hepatic bile duct in the OVis group, but not in the OV and CCAis groups. However, in the CCAis group (with suppressed immunity) early appearance and greater severity of cholangiocarcinoma were observed; gross pathological examination revealed many cancer nodularities on the liver surface, and histopathological studies showed the presence of cancer cells, findings which correlated with the predominant expression of COX2. The present study suggests that host immune responses are intended to ameliorate pathology, and they are also crucially associated with pathogenesis in O. viverrini infection; the unbalancing of host immunity may enhance cancer-related inflammation.  相似文献   
2.
Oxysterols are oxidation products of cholesterol that are generated by enzymatic reactions mediated by cytochrome P450 family enzymes or by non-enzymatic reactions involving reactive oxygen and nitrogen species. Oxysterols play various regulatory roles in normal cellular processes such as cholesterol homeostasis by acting as intermediates in cholesterol catabolism. Pathological effects of oxysterols have also been described, and various reports have implicated oxysterols in several disease states, including atherosclerosis, neurological disease, and cancer. Numerous studies show that oxysterols are associated with various types of cancer, including cancers of the colon, lung, skin, breast and bile ducts. The molecular mechanisms whereby oxysterols contribute to the initiation and progression of cancer are an area of active investigation. This review focuses on the current state of knowledge regarding the role of oxysterols in carcinogenesis. Mutagenicity of oxysterols has been described in both nuclear and mitochondrial DNA. Certain oxysterols such as cholesterol-epoxide and cholestanetriol have been shown to be mutagenic and genotoxic. Oxysterols possess pro-oxidative and pro-inflammatory properties that can contribute to carcinogenesis. Oxysterols can induce the production of inflammatory cytokines such as interleukin-8 and interleukin-1β. Certain oxysterols are also involved in the induction of cyclo-oxygenase-2 expression. Inflammatory effects can also be mediated through the activation of liver-X-receptor, a nuclear receptor for oxysterols. Thus, several distinct molecular mechanisms have been described showing that oxysterols contribute to the initiation and progression of cancers arising in various organ systems.  相似文献   
3.
4.

Purpose

In this study, the contrasting properties of human serum albumin nanoparticles (HSA-NPs) loaded with gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) and coated with transferrin in MRI in mice are evaluated.

Procedures

HSA-NPs were conjugated with Gd-DTPA (Gd-HSA-NPs) and coupled with transferrin (Gd-HSA-NP-Tf). Mice underwent MRI before or after injection of Gd-DTPA, Gd-HSA-NP, or Gd-HSA-NP-Tf.

Results

All the studied contrast agents provided a contrast enhancement (CE) in the blood, heart muscle, and liver. Compared to Gd-DTPA, CE with HSA-NP was achieved at lower Gd doses. Gd-HSA-NP-Tf yielded significantly higher CE than Gd-HSA-NP in the skeletal muscle, blood, cardiac muscle, and liver (p?<?0.05). Gd-HSA-NP-Tf achieved a significantly higher CE than Gd-HSA-NP and Gd-DTPA in the blood, cardiac muscle, and liver (p?<?0.05). In the brain, only Gd-HSA-NP-Tf was found to cause a significant CE (p?<?0.05).

Conclusions

The Gd-HSA nanoparticles have potential as MRI contrast agents. In particular, Gd-HSA-NP-Tf has a potential as a specific contrast agent for the brain, while the blood–brain barrier is still intact, as well as in the heart, liver, and skeletal muscle.  相似文献   
5.
6.
7.
Human liver fluke, Opisthorchis viverrini (Ov), is the major risk factor of cholangiocarcinoma (CCA) in northeastern Thailand. Our approach focuses on genetic progression and molecular changes in the carcinogenic pathway of liver fluke‐associated CCA aimed at assessing patients at risk of CCA and using chemoprevention as the secondary cancer prevention to reduce the incidence of CCA. This review summarizes altered gene expressions, biomolecules and their modification, i.e. DNA adducts, oxidized proteins, oxysterols and fibrotic markers in hamster‐ and human‐CCA. Potential risk biomarker(s) and chemopreventive agent(s) criteria and selection were based on results from experimental and epidemiological studies identifying hepatobiliary disease, including CCA. Laboratory results reveal that oxidative stress induced by Ov infection leads to bimolecular damage, tissue remodeling especially periductal fibrosis and alteration of gene expressions, which could be involved in all steps of CCA carcinogenesis. Some of these molecules are reported to change their levels in opisthorchiasis, periductal fibrosis diagnosed by ultrasonography and CCA. Chemoprevention in experimental CCA tumorigenesis is discussed. These multiple risk biomarkers could now be explored for screening including chemopreventive intervention of subjects living in endemic areas where the prevalence of opisthorchiasis remains high.  相似文献   
8.
The activation of Ephrin (Eph) receptors, the largest tyrosine kinase families of cell surface receptor, has recently been addressed in human cholangiocarcinoma (CCA). Therefore, the present study aimed to investigate the role of Eph receptors and its ligands in CCA. Of all 50 cases of human CCA tested, immunohistochemical staining demonstrated that EphB2, EphB4, ephrinB1, and ephrinB2 were 100 % positive in CCA tissues with overexpressions of the above proteins as 56, 56, 70, and 48 % of cases, respectively. High expression of EphB2 was significantly correlated with the metastatic status of patients (P?=?0.027). We also found that the high co-expression level of EphB2/ephrinB1 or EphB2/ephrinB2 were significantly correlated with the metastatic status of the patients (P?=?0.034 and P?=?0.024). Furthermore, we showed that the high co-expression level of EphB4/MVD and ephrinB1/MVD were significantly correlated with the metastasis status of CCA patients (P?=?0.012 and P?=?0.029). We further demonstrated that the EphB2 suppression using siRNA significantly reduced CCA cell migration by decreasing the phosphorylation of focal adhesion kinase (FAK) and paxillin. In conclusion, the upregulation of EphB2 receptors and its specific ligands (ephrinB1 and ephrinB2) leads to CCA metastasis. Suppression of EphB2 expression as well as inhibition of its downstream signaling proteins might serve as possible therapeutic strategies in human CCA.  相似文献   
9.
Improving therapy for patients with cholangiocarcinoma (CCA) presents a significant challenge. This is made more difficult by a lack of a clear understanding of potential molecular targets, such as deregulated kinases. In this work, we profiled the activated kinases in CCA in order to apply them as the targets for CCA therapy. Human phospho-receptor tyrosine kinases (RTKs) and phospho-kinase array analyses revealed that multiple kinases are activated in both CCA cell lines and human CCA tissues that included cell growth, apoptosis, cell to cell interaction, movement, and angiogenesis RTKs. Predominately, the kinases activated downstream were those in the PI3K/Akt, Ras/MAPK, JAK/STAT, and Wnt/β-catenin signaling pathways. Western blot analysis confirms that Erk1/2 and Akt activation were increased in CCA tissues when compared with their normal adjacent tissue. The inhibition of kinase activation using multi-targeted kinase inhibitors, sorafenib and sunitinib led to significant cell growth inhibition and apoptosis induction via suppression of Erk1/2 and Akt activation, whereas drugs with specificity to a single kinase showed less potency. In conclusion, our study reveals the involvement of multiple kinase proteins in CCA growth that might serve as therapeutic targets for combined kinase inhibition.  相似文献   
10.
Phosphatidylinositol 3-kinase (PI3K) signaling plays a critical role in cholangiocarcinoma (CCA), as well as anti-cancer drug resistance and autophagy, the type II program cell death regulation. In this work, we aimed to: (1) determine the expression levels of several key components of PI3K signaling and (2) evaluate whether NVP-BEZ235, a novel dual PI3K/mTOR inhibitor, could inhibit CCA cell growth. Immunohistochemistry for p85α, p110α, AKT, p-AKT (T308), mTOR, p-mTOR (S2448), GSK-3β, p-GSK-3β (S9), PTEN, and p-PTEN (S380, T382/383) was performed in 30 CCA patients. Western blotting was used to analyze PTEN and p-PTEN expression in the cell lines (KKU-OCA17, KKU-100, KKU-M055, KKU-M139, KKU-M156, KKU-M213, and KKU-M214). The effects of NVP-BEZ235 on CCA cells were evaluated using a growth inhibition assay, flow cytometer and migration assay. Increased activation of PI3K/AKT signaling was reproducibly observed in the CCA tissues. The expression of p85α, mTOR, and GSK-3β was significantly correlated with metastasis. Interestingly, PTEN suppression by loss of expression or inactivation by phosphorylation was observed in the majority of patients. Furthermore, NVP-BEZ235 effectively inhibited CCA cell growth and migration through reduced AKT and mTOR phosphorylation and significantly induced G1 arrest without apoptosis induction, although increase autophagy response was observed. In conclusion, the constitutive activation of PI3K/AKT pathway in CCA is mainly due to PTEN inactivation by either loss of expression or phosphorylation along with an increased expression in its pathway components heralding a poor prognosis for CCA patients. This work also indicates that inhibition of PI3K and mTOR activity by the inhibitor NVP-BEZ235 has anti-cancer activity against CCA cells which might be further tested for CCA treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号