首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
工业技术   3篇
  2012年   2篇
  2009年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
利用多小波的改进多层阈值对超声图像降噪   总被引:1,自引:0,他引:1       下载免费PDF全文
医学超声图像存在特有的斑点噪声,大大降低了图像质量,必须进行降噪处理。多小波具有比单小波分解更加精确、去噪效果更好的特点。对超声图像进行分形插值多小波分解,根据多小波分解后的能量分布特性,提出了改进多层阈值与模糊聚类相结合方法,将小波系数模糊聚类分成噪声和信号两类,然后在不同尺度对信号小波系数进行不同阈值萎缩处理,实现降噪目的。结果表明该方法优于硬阈值和软阈值法,可有效地降低图像斑点噪声并保留图像细节。  相似文献   
2.
利用遥感图像对森林类型进行分类是大面积地调查、监测、分析森林资源的快速与经济的方法,但由于不同森林的光谱特征非常相近而较难准确分类。因此,在GPS数据和高分辨率遥感图像的支持下,对水源林Landsat TM遥感图像用窗口法获得阔叶林、针叶林和竹林样本图像,然后计算其小波分解后小波系数的l1范数纹理测度构成分类特征向量,利用支持向量基SVM进行分类。结果表明,利用SVM对图像中阔叶林、针叶林和竹林分类平均精度在80%以上,可较准确地识别森林类型,图像总体分类精度达到90.2%,Kappa系数0.77,均比利用小波纹理特征的神经网络法和最大似然法有所提高,森林分类错误产生的主要原因是混交林造成两类森林间存在交集。该方法可以较有效地提高遥感图像森林类型的分类精度。  相似文献   
3.
遥感图像纹理特征是光谱相近林型准确分类的有效方法,然而其带来分类特征向量维数增加和计算量增大。因此,对南方山区林地TM图像进行独立成分分析ICA降维,通过计算灰度共生矩阵获取纹理特征,使用SVM分类,研究林地类型的快速分类方法。结果表明,ICA与SVM法利用遥感图像纹理特征可较准确地实现林地类型分类,分类总精度、Kappa系数分别为85.4%、0.73,均高于SVM法、BP神经网络法、最大似然法、最小距离法;其对阔叶林、针叶林、竹林的分类精度依次为78.2%、80.1%、84.3%,误识率主要是由于混交林而造成两类林地之间存在交集,易出现的针阔混交林使得阔叶林、针叶林的分类精度低于竹林。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号